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Abstract

The influence of recent developmentsin supercomputingon computa-
tional chemistry is discussedwith particular referenceto Cray computers and

their pipelined vector/limited parallel architectures. After reviewing Cray hard-
ware and softwareweexamine the performanceof different elementaryprogram

structures and outline effectivemethods for improving program performance. We

then discussthe computa.tional strategies appropriate for obtaining optimum per-
formance in applications to quantum chemistry and dynamics. Finally, somedis-

cussion is given of new developmentsand future hardware and software improve-
ments.



I. Introduction

The advent of supercomputers has had a profound influence on the devel-

opment of computational chemistry in the last decade. Any increase in comput-

ing power from a given level will, of course, increase the range and size of prob-

lems that can be studied, but the influence of supercomputers goes much deeper

than this. The need to develop new algorithms to exploit supercomputers fully

affects formal mathematical aspects of computational chemistry methodology,

while in some areas the ability to perform calculations at new levels of accuracy

or on new chemical systems can alter entire computational chemistry strategies.

In the present review, our goal is to show how the supercomputers produced by

Cray Research Inc. (CRI) have influenced two areas of computational chemistry

-- molecular electronic structure and dynamics calculations. We shall discuss as-

peers of performance and programming for a range of Cray computers, and show

how these factors have influenced tile methodology and implementation in these

areas. We shall also discuss how the results obtained from calculations have in

turn influenced the philosophy behind the calculations.

At the time of writing, several different supercomputer models are pro-

duced by CRI. All are parallel, pipelilled vector computers. The CRAY X-MP

series is a development of the original CRAY-I: the machines are equipped with

one to four CPUs, up to 16 megawords (MW) of very fa.st memory (up to 64 MW

in the latest models) with multiple channels to each CPU, and a clock period of

8.5 ns (10 ns on the "se" series). The X-MP machines are characterized by excel-

lent scalar performance and a rather rapid convergence to their asymptotic per-

formance limit, that is, good performance on arithmetic involving short vectors.

For example, they achieve over half their asymptotic performance of 235 million

floating-point operations per second (MFLOPS) in multiplication of matrices of

order 11 x 11. The CRAY Y-MP is a natural successor to the X-MP, with a

clock period of 6 ns and up to 32 MW of memory. Its performance characteristics

are very similar to those of the X-MP. The CRAY-2 is a rather different devel-

opment, compared to the X-MP, from the original CRAY-1. The clock period is

only 4.1 ns, and the machine can be equipped with up to 512 MW of relatively

slow memory. As a consequence, at well over 400 MFLOPS the asymptotic per-

formance is even higher than the Y-F[P, but the performance on scalar or short

vector arithmetic is not as good, proportionally, as on the X-MP series. This dif-



ference should not be overemphasized, however: the CRAY-2 still reaches half its

asymptotic performance with the multiplication of matrices of order 25 x 25. In

this sense all the Cray computers can be regarded as generally similar in achiev-

ing excellent performance without the need to go to long vector lengths. They are

thus quite different from supercomputers like the CDC CYBER 205, or many of

those from Japanese manufacturers.

Obtaining high pelforma.nce from Cray computers requires the proper ex-

ploitation of parallelism in codes to use multiple functional units, pipelined vector

hardware, and (where available) multiple CPUs. We can consider parallelism as

arising at several levels. At the lowest level is the possibility of parallel execution

of instructions derived from a single program statement, using the multiple func-

tional units. At the next level is vectorization, the "parallel" execution of loop

iterations using the vector functional units. From the programming point of view

the fact this is not strictly parallel but pipelined execution is usually irrelevant. It

is also possible to execute different loop iterations (or groups of iterations) on dif-

ferent CPUs. This next level of parallelism, termed "microtasking" by CRI [1,2],

is more elaborate than the lower levels, as code must be included to acquire, re-

lease and possibly synchronize other CPUs. An even higher level of parallelism

is the execution of larger code fragments (individual subroutines, say) on several

CPUs simultaneously. This approach, referred to as "macrotasking" by CRI [1,2],

may involve execution of quite different tasks on different CPUs, whereas micro-

tasking would usually have all CPUs executing the same instructions but with

different data. Finally, the highest level of parallelism corresponds to running sep-

arate user jobs on the various CPUs: this is conventional multiprocessing at the

operating system level. We shall be particularly concerned with the implementa-

tion of parallelism at these various levels in computational chemistry codes in this

review.

Our aim here is to explain how va.rious methods of computational chem-

istry can be formulated to take lnaximuln advantage of the power of Cray super-

computers. In order to provide the necessary background for this we discuss the

characteristics and performance of different Cray computers, and then we con-

sider a number of computational chemistry activities in some detail. Our empha-

sis will be on the utilization of Cray computer parallelism and we assume readers

are already familiar with the formalism of a.b initio electronic structure method-
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ology [3] or of classical and quantum mechanicalscattering [4-6]. We should also
note here that aswe routinely perform calculationsusing computersother than

thosefrom CRI, we generally avoid programming techniquesthat arevery ma-

chine specific. In particular, weeschewthe useof assemblylanguage,and wegen-

erally attempt to implement algorithms that will be reasonablyefficient on other

supercomputer architectures. Someexamplesof algorithm choicemotivated in

part by theseportability considerationsarepresentedin our discussion.
In the next section, wediscussthe various Cray computers,both hard-

ware and software. In section III we describethe performancecharacteristicsof

the different machinesfor sometypical codefragments, and deducefrom these

results the appropriate techniquesfor obtaining maximum performance. In sec-

tions IV and V we discussthe implementation of thesetechniquesin various

stepsof molecular electronic structure calculations and dynamics calculations,
respectively. Thesesectionsalsoreview the waysin which supercomputershave

influenced different aspectsof computational chemistry. SectionVI comprises

our conclusions;we also speculateon the role forthcoming machines,suchasthe

CRAY-3, will play in computational chemistry.



II. Cray computers

A. Hardware

We shall discussthe perfornianceand useof the CRAY X-MP,

CRAY Y-MP, and CRAY-2 computers. As stated above,theseare pipelined vec-

tor processorswith multiple high-speedCPUs. Vector arithmetic is performed

on operandsheld in eight 64-element64-bit vector registers. Resultsfrom one

floating-point unit can be passedto other floating-point units while being re-

turned to the registers on the X-MP and Y-MP: this is referred to as "chain-

ing". This feature is not availableon the CRAY-2. Our discussionof the X-MP
is concernedprimarily with a four CPU eight MW X-MP/48, an older ma-

chine with a clock period of 9.5 ns as opposedto the 8.5 ns of the latest X-MPs.

This X-MP/48 features hardware GATHER/SCATTER and is configured with
an eight MW input/output processorand a 128MW solid-state storage de-

vice (SSD). The main memory is divided into 32banks, and has a memory access
time of elevenclock periods to load a singleword into a CPU register. Successive

banks can deliver words to the registersin successiveclo& periods, but eachbank

is busy for four clock periods after initiation of a read request. Each CPU has
four channelsto memory: two read, oiie write and one input/output (I/O). We

shall also discusssomeexperiencewith an X-MP/14se , with a single CPU (clock

period 10ns) and four MW of nieniory. Coini)arisonsbetween the performanceof

the X-MP/48 and the X-MP/14se aregiven below.

We shall discussthe performanceof two slightly different CRAY-2

computers. Both are four CPU machineswith 256 MW of main memory and a

clock period of 4.1 ns. Each CPU hasa singlechannelto memory, and 16kilo-

words (KW) of very fast "local memory" that can be used asa type of cacheto

enhanceperformance. However,explicit control over local memory is available

only to the assembly-languageprogrammer, although high-level languagecompil-

ers are being extended to generatecode to utilize this hardware,as are someli-
brary routines. The CRAY-2 main memory is divided into 128banks,but a soft-

ware technique ("pseudo-doublebanking") providesemulation of 256banks. Like

the X-MP, successive banks can deliver words in successive clock periods. How-

ever, the CRAY-2 memory is, in effect, divided into quadrants, and in any partic-

ular clock period a given CPU can access only one of the quadrants. This causes

significant complications in a multi-user environment, as when a user job recovers



a CPU and starts to issuememory requestsit may well find the requests "out of

phase" with the CPU quadrant access.Even in dedicatedmode it is possiblefor a

job to be up to three clock periods out of phasewith memory. The two CRAY-2s
discusseddiffer in that the older 1ha.chinehasa bank busy time of 57 clock peri-

ods, while the newer machine (referred to below as CRAY-2*) hasa somewhat
reducedbank busy time of 42 clock periods. Clearly, there is a very significant

differencebetween the memory performanceon the CRAY-2 and on the X-MP

and this differenceappearsin almost all performancecomparisons,aswe will see

below. We shall also present results obtained on a CRAY Y-MP, equippedwith

S CPUs (6 ns clock period), 32 MW of memory (256 banks) and a 256 MW SSD.

As expected, the Y-MP behaves very like the X-MP but scaled in performance

by the faster cycle time.

Various disk subsystems are available from CRI; the machines to which

we have access are largely configured with DD49 disk drives, with 150 MW of

storage per drive and a data transfer ra.te on the order of 1 MW per second

(MW/s) for a single unit. The X-MP and Y-MP have input/output (I/O) pro-

cessors, essentially a large memory (8 MW on our X-MP/48, 32 MW on our

X-MP/14se) buffer between CPU and disk. The transfer rate between the I/O

processor and CPU is more than ten times faster than the transfer rate to disk,

and substantial improvements in I/O performance can be achieved by "striping"

files across multiple disks, so that successive blocks are written to different drives.

These blocks can be read into the I/O processor in parallel, and then the data

can be transferred to the CPU. Even better I/O performance can be obtained by

using the SSD, available for the X-MP and Y-MP machines. The X-MP/48 we

discuss has two channels to the SSD, and each is capable of transferring data at

over 150 MW/s. In addition, the SSD has no overheads associated with head po-

sitioning and rotational delays, so that I/O can be performed with essentially no

I/O wait time.

In the latest system versions I/0 processing on the CRAY-2 also uses

disk striping, and the larger memory of the CRAY-2 allows large buffers to be

used for read-ahead/write-behind on sequential system I/O. Further, by taking

advantage of this large memory when programming sorting steps it will often be

possible to sort in memory, instead of using direct access disk I/O.



B. Software

1. Operating systems

There are three operating systemsin common usefor Cray computers:

COS, UNICOS and CTSS. COS is a batch-job-oriented system that runs on the

X-MP (and the CRAY-1). UNICOS is an interactive systemfor the CRAY-1,
X-MP, Y-MP, and CRAY-2, basedon AT_T UNIX SystemV with significant

extensions(including somefrom BerkeleyUNIX). CTSS is another interactive

system,basedon the Livermore Time-Sharing System. We will not discussCTSS

further here,nor will we considerthe Guest Operating System,which allows UNI-
COS to be run on someCPUs of a multiprocessorsystem and COS on others.

The X-MP/48 results we discussare obtained under COS,while the X-MP/14se,
Y-MP, and CRAY-2 results are all obtained under UNICOS.

COS, as noted above,is a batch-job-oriented system: it hasa fairly lim-

ited repertoire of job control language(JCL) commands,but thesenevertheless

provide essentially all the functionality required to carry out large-scalescientific

computations. In addition to compilers (discussedbelow) and loaders,COS [7]

featuresprogram maintenanceutilities, permanent file managementand archiv-

ing, and dynamic (transparent to the user) managementof resourcessuchas the
SSDor scratchfile spacefor local files. However,CRI is apparently committed

to UNICOS asits recommendedopera.tingsystem,and support for COS is being

gradually withdrawn. For example, new sitesare normally installed with UNI-

COS as the operating system. While this may havesomeadvantagesfrom the

point of view of operating system maintenance(COS being written largely in

Cray assemblylanguage (CAL) and UNICOS largely in C), it is not clear how

much benefit the end-usersees,especially the end-userinterested mainly in large-

scalescientific calculations. This issueis discussedat greater length below.

UNICOS [8] featuresessentially a completeset of UNIX commands,in-

cluding both the Bourne and C shells and the TCP/IP remote file transfer (FTP)

and communications (TELNET) package.UNIX itself is rather deficient in as-
pects of resourcemanagementand batch job execution (no queues,no scratch

files, etc), and these deficienciesare being addressedas part of the developmentof

UNICOS. For example, the Network QueueingSystem(NQS) [8] hasbeen incor-

porated into UNICOS in order to provide control over job execution and queues.

However,UNICOS version 4.0 (the latest releaseat the time of writing) doesnot
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yet provide as flexible a batch environment as COS, at least from the point of

view of the production user, although future releases should improve this situa-

tion. It is also unfortunate that at the present time the X-MP and CRAY-2 run

under slightly different dialects of UNIX, especially in view of the reputation of

UNIX as a portable operating system. Presumably the differences will gradually

be eliminated as UNICOS matures.

It may be useful here to conipare UNICOS and COS as operating sys-

tems as they are seen by a user interested in large-scale scientific calculations.

First, there is certainly some convenience in having interactive access to the ma-

chine from the point of view of compiling, debugging, etc, although the delay in

turnaround for small jobs in going through, say, a VAX station to X-MP COS

should seldom be significant. Further, as nlany of the UNIX commands were de-

vised to assist in program development there is a wider range of powerful software

tools available in UNICOS than in COS. On the other hand, from the point of

view of running production jobs, UNICOS (strictly, UNICOS plus NQS) in its

present version (4.0) appears to be iiiferior to COS. The dearth of resource man-

agement facilities in UNICOS (for exaniI:)le, the lack of ai_y method for allocat-

ing and managing scratch file space beyond user goodwill in CRAY-2 UNICOS)

makes the COS environment nluch more convenient for the production user. Fur-

ther, comparisons suggest that user job throug.;hput on the same hardware can

be considerably (several times) tiigher using; COS. This is related in part to the

rather poor I/O performalice we have experienced under X-MP UNICOS, where

sequential I/O performance has been severely impacted when several jobs are run-

ning [9]. This affects CPU times as well as wall clock times, by a factor of four or

more: we have observed a factor of ten increase relative to COS when I/O is done

with the default file block size. Finally, a.t this time (using COS version 1.16)

none of our production tasks reveal operating system bugs in COS that require

workarounds or special tactics (the issue of compiler bugs is treated below), while

even under UNICOS 4.0 certain codes will not operate correctly without special

modifications. Again, this situation will no doubt improve as UNICOS matures,

but at present our view is that computationa.1 chemists are better served by COS

than by UNICOS.
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2. FORTRAN compilers

As discussedin the Introduction, our aim is to avoid the useof assembly

languageand to usea high-level languagefor our codes.The debateover FOR-
TRAN's deficienciescontinues,but for most scientists the accumulation overa

number of yearsof a considerablebody of functioning softwarewritten in FOR-

TRAN, together with the availability of optimizing compilers,makesit the high-

level languageof choice(see,e.g. Ref. 10).
The X-MP and the CRAY-2 eachoffer two compilers invoked as CFT

and CFT77. It is a little unfortunate in view of the nomenclaturethat the CFT

compilerson the two machinesare not the same: CRAY X-MP CFT [11] is a
product line that goesback to the CRAY-1, and has beenfully compatible with

the FORTRAN 77 standard since1981(version 1.10); the CRAY-2 compiler [12],
whoseproduct name is CFT2, is a FOIlYYRAN60-basedcompiler (again origi-

nally derived from an early version of the CRAY-1 compiler) that is still not com-

patible with the FORTRAN 77 standard. Both of thesecompilersare written in

assemblylanguage. CFT77 [13] is (in principle) the sameproduct on the X-MP

and the CRAY-2, and as its name suggestsis i\llly compatible with the FOR-
TRAN 77 standard. This compiler is written in Pascal,and as a consequenceis

much slower in compiling code than either version of CFT (sometimesby an or-

der of magnitude or more), but this is only of consequencewhen large programs
haveto be completely recompiled. CRI's long-term commitment seemsto be to

CFT77: CFT is not available on the Y-MP, for example.

Both the CFT and CFT77 compilersfeature extensiveoptimization and

vectorization capabilities, as would be expected;CFT77 alsoincludes explicit at-

ray syntax following the FORTRAN SX proposa.1[10]. In addition, the newest

releaseof CFT77 provides somecapability for recognizingmicrotasking direc-

tires [1,2]and generating code to run on multiple CPUs. The compiler optimiza-
tion involves both local and global (critical path) techniquessimilar in their ef-

fect to other advancedFORTRAN compilers. The compilers' ability to vectorize

code has improved substantia.llyover the years,especiallyin the area of condi-

tional statements in loops, or generation of codefor vectorized and non-vectorized

versionsof loops with run-time decisionas to which is correct to use. While a

number of constructs still inhibit vectorization, the compilers arebeing improved

constantly in this area, and severalexamplesare discussedlater. As is common
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with vectorizing compilers, it may be necessary to inform the compiler explicitly

that certain constructions should not inhibit vectorization, because from the code

alone it may be impossible to tell whether vectorization should be allowed. In the

loop

DO 10 1 = I,N

A(I+M) = A(I)

I0 CONTINUE

the loop can be vectorized if M > N, but the compiler cannot check this at com-

pile time, and would flag the loop as non-vectorizable. By including a directive

informing the compiler that M _> N ahvays holds, that is, to ignore any potential

addressing problems -- "vector dependencies" -- the user can ensure the loop

will be vectorized. In principle, a test for such dependencies could also be gen-

erated for execution at run time, but this facility is not currently available. The

compiler directives [11-13] have the form of a FORTRAN comment statement, so

this does not interfere with portability; however, while other manufacturers also

employ such devices there is no standardization of directive names or syntax.

For efficient use of Cray computers, it is imperative to make maximum

use of data once it has been loaded into the vector registers. The compilers are

still not sophisticated enough to relieve the programmer of this job entirely: for

example, the unrolling of DO-loops [14] usually enhances code performance under

CFT or CFT77, unlike, say, the Allia.nt FX/FORTRAN compiler, for which user

unrolling of loops generally reduces performance.

The latest improvements in CFT77 notwithstanding, FORTRAN sup-

port for using multiple CPUs on the various Cray machines is still fairly prim-

itive [1,2]. Microtasking requires special constructs to be inserted in the code,

which is then passed through a pre-processor to generate small CAL routines to

manage the multitasking. It is this pro-processing step that the latest version of

CFT77 appears to be able to ma.nage for itself. Macrotasking, which normally in-

volves coarse-grained parallelism, is handled through a set of FORTRAN-callable

routines to organize starting multiple tasks and synchronizing them. In the very

earliest form of microtasking, it was intended that microtasked versions of var-

ious library routines would be ava.ilable, but this is not the case in the present

release. This is a great pity, as a method of using nmltiple CPUs that was essen-

tially transparent to the user (in pa.rticular, that required no non-standard code
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modifications) would be very valuable, aswould automatic compiler-generated

parallel codefor DO loops (especiallyouter DO loops where inner DO loops
havebeen vectorized). Thesefacilities are alreadypresent in compilers and li-

braries for other machines, like the Alliant FX/8 [15,16],and will no doubt ap-

pear in the CFT77 compiler as it is further developed. Microtasked libraries are

also promisedby CRI. In view of the trend to larger numbersof CPUs (8 on the

Y-MP, 16 on the CRAY-3) it seemsimperative to provide strong support for

multitasking -- as the number of CPUsgrows it will becomeincreasingly diffi-
cult to keep a machine busy with individual jobs unlessvery sophisticatedjob

schedulersare developed.

One of the inevitable consequencesof exploiting machine parallelism is

an increasein the memory required for a.given computational task. One of the

"8X" extensionsto FORTRAN is the conceptof allocatable arrays [10], storage

for which is allocated dynamically on entry to a subroutine and which is dens-

signed (i.e. deallocated, at least in principle) on exit from the subroutine. This
facility is available in recent versionsof CFT77, but unfortunately the allocated

storage is not returned on exit from the subroutine, so that the overall memory
length can grow but not shrink using this approach. The useof allocatable ar-

rays also incurs substantial overheadsat present. More traditional methods of

"dynamical allocation" are basedon user-controlledexpansionof the field length

to adjust the sizeof blank common,which is conventionally loaded at the end of

user memory. In this way memory can be a.cquiredand returned as desired. How-

ever, this approach reflects a fairly primitive philosophy -- that of using a user

stack and assumingthat no other part of the job will alter the field length. This

assumption is vitiated at the outset in COS, for exmnple,where systembuffers

are allocated at the highest user addresses,"growing" downwardsasmore files are

opened. Care is therefore required to ensurethat the user'sexpanding stack does
not collide with the system. In general,with more sophisticated memory manage-

ment featuresbecoming available (like the heap-basedallocation in UNICOS [17])

it seemspreferable to avoid expandingblank common and to make more useof
allocatable arrays. This is especia.llytrue in multitasked jobs, wherespecial atten-

tion must be paid to avoiding conflict,s in addressingdata structures in different
tasks. The useof allocataMe arras_swithin eachtask is clearly a much simpler ap-

proach than trying to coordinate the expansionof blank common by more than
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one task. It is to be hoped that this very powerful feature will be fully imple-

mented soon,as it will provide an important part of the support for multitasking.
In view of the sophistication required of a compiler that is to perform

global optimization, vectorization, and someexploitation of multitasking, it is not

entirely unexpected that the Cray compilersoccasionallyproduceerroneouscode.

Much of this (especially under CFT2 on the CRAY-2) derivesfrom attempts to
optimize too large and complicated a code segment,and can be cured simply by

decreasingthe maximum sizeof a code block the compiler will try to optimize.
Further, errors seldom causea codeto produceanswerscloseto the correct values

-- they usually produce obviously incorrect results. Nonetheless,sucherrors area
considerablenuisance,as they can often be data-dependent,and will disappear in

small, manageabletest calculations, occurring only in large, expensiveproduction
runs. Unlike the situation with the UNICOS operating system,where there has

been an overall improvement as new syst.emversionshave beenreleased,more re-

cent compilershave displayedmore problems than older versions. This is partic-

ularly true of the X-MP CFT compiler. No doubt the adoption of CFT77 asthe

soleFORTRAN compiler will allow more effort to be concentratedon improved

and error-free generation of code to exploit the various levelsof parallelism.
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II1. Performance

A. Elementary computational chemistry kernels.

A number of previous studies of Cray computer performance in the con-

text of computational chemistry ha.reappeared,and timing information on vari-

ous types of constructs (primitive operations or "kernels", asthey are termed in

the study by Saundersand Guest [18]) that occur widely in computational chem-

istry codeshave been given. In the presentwork wewill use two typical kernels
to illustrate particular performanceaspectsof different Cray computers. We will

then briefly present performance figures of someother representativekernels. We
should note here that the timing results wepresent are subject to someuncertain-

ties, especiallyon the CRAY-2 where memory accessdelaysfrom other userjobs
." e better than 10%.can makeobservedtimes reproduclbl Jto no

The first kernel wewill consider is the addition of a multiple of one vec-

tor to another, given in FORTRAN a.s

DO tO I = I,N

A(I) = A(I) + SCALAR*B(I)

I0 CONTINUE

(referred to as SAXPY, using the BLAS name [19]). This is _ rather typical sim-

ple vector operation and its behavior will serve as a model for other loops. The

second kernel is the more elaborate operation of matrix multiplication, repre-

sented in FORTRAN (with a SAXPY inner loop) by the code

DO I0 J = I,N

DO 20 I = 1,N

C(I, J) = A(I,I)*B(I,J)

20 CONTINUE

DO 30 K = 2,N

DO 40 I = I,N

C(I,J) = C(I,J) + A(I,K)*B(K,J)

40 CONTINUE

30 CONTINUE

I0 CONTINUE

Matrix multiplication is a particularly e_cient operation on all Cray computers

and it therefore offers the greatest scope for enhancing program performance. In
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practice, what is often desired is the more elaborate expression

C = o_C +/_AB, (III.1)

which forms the proposed Level 3 BLAS specification [20]. We will discuss later

the handling of the more general forms and of sparseness in the matrices.

For some simple kernels, it is possible to estimate the expected perfor-

mance by considering instruction times. However, in most cases this is not very

fruitful, as both compiled code and library code may take advantage of special

features (or may be handicapped by special problems such as bank conflicts) and

often produce quite different rates. We have chosen here to discuss only observed

performance obtained on various macllines (running a normal job mix, not in

stand-alone mode) under different compilers. By analogy with the approach to

hardware characterization of Hockney and Jesshope [21], we can evaluate from

the performance data two quantities characteristic of each kernel: the maximum

performance, r_, (a rate in MFLOPS) a.nd the vector length at which half this

performance is observed, denoted nl/2. (We should note that since most opera-

tions do not yield monotonically increasing performance rates, ro_ is not taken as

the asymptotic rate, but rather as the highest observed rate for any vector length

up to 1024.) In addition to the rather detailed discussions of SAXPY and matrix

multiplication performance, we tabula.te ro_ and hi�2 values for a number of other

kernels concerned with both arithmetic and data motion.

B. SAXPY and matrix multiplication.

Table 1 shows the perforniance for the SAXPY operation obtained on

a CRAY X-MP/48, using the CFT and CFT77 compilers, and also the SAXPY

subroutine from CRI's scientific subroutine library, SCILIB [17,22]. It is evident

that the best performance is obtained using the CFT77 compiler, avoiding the

overhead associated with calling the library routine. CFT77 also displays the

smallest nl/2 value. The better performarice of the code obtained from CFT77

relative to CFT is rather typical of the behavior of the two compilers (at least

at the time of writing): CFT77 commonly produces code faster by 20 to 30% or

more. All times in Table 1 show a steady growth in performance as the vector

length increases, up to a vector length of 63. Somewhat unexpectedly, in view of

the "natural" vector length of the machine, the performance for vector lengths
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of 64 is not quite ashigh as for 63, although this may reflect the fact the code

generatedis designedto copewith vectors longer than 64. This behavior is not
observedfor other pairs of lengths such as 127and 128,or 255 and 256. Finally,
we note that the best rate observedfor the SAXPY operation falls short of the ul-

timate performance (210 MFLOPS for an X-MP with 9.5 ns clock), eventhough
both an addition and multiplication are required in the innermost loop and these

operations can be chainedon the X-MP.

A comparisonof SAXPY perforinanceon severaldifferent Cray comput-

ers is given in Table 2. Only the approach that gives the highest r_ is shown:

this is the simple FORTRAN loop of the previous subsection compiled with

CFT77 on the X-MP macllines and the SCILIB version of the BLAS call on the

CRAY-2 machines. This difference probably reflects the absence of hardware

chaining on the CRAY-2, which could be partially compensated for by care-

ful assembly language coding of a library routine but which is probably beyond

the compiler's capabilities. The best performance on the CRAY-2 is much less

than the theoretical 488 MFLOPS, so even less of the machine's power can be

exploited this way than on the X-MP. Also, while the CRAY-2 performance ira-

proves steadily up to vector lengths of about 64 there are numerous fluctuations

above this value that do not correlate with any obvious hardware characteristics.

The timing tests were performed on production machines in multi-user mode,

so these fluctuations may represent problems with bank conflicts engendered by

other user jobs and by context switching.

The X-MP/48 matrix multiplication results displayed in Table 3 provide

a different perspective on performance. Here, the SCILIB routine MXM outper-

forms all the FORTRAN ill_plementations listed. The latter comprise the SAXPY

inner loop form given explicitly iIl the previous subsection, a similar approach

with a dot product inner loop, and the SAXPY inner loop form as above with

the J loop unrolled four times. Although the unrolled loop structure gives quite

good performance with larger array dimensions, it is still not competitive with the

library MXM. The latter not only has an r_value of almost 200 MFLOPS, but

obtains half this rate with a matrix dimension of only 11. The use of the library

matrix multiplication routine would thus seem to be an ideal route to high perfor-

mance on the CRAY X-MP, even for problems of rather small dimension.

A comparison of matrix nmltiplication performance on several Cray corn-
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puters is given in Table 4. For all machinesthe highest rates are obtained with
the library MXM routine. While the CRAY-2 performancestill falls somewhat

short of the maximum possible,experiencehasshownthat this derivessubstan-

tially from bank conflict problerns createdby competition with other user jobs.
In stand-alonemode we have observedCRAY-2 MXM performanceof more than

420 MFLOPS. This is similar to the fraction of the theoretical performanceob-

tained on the X-MP/48. Although nl/2 for MXM on the CRAY-2 is larger than

for the X-MP machines the values a.re still fairly small, so we can conclude that

matrix multiplication is a route to high performance on the CRAY-2 as well as

on the X-MP.

It is quite straightforward to rationalize the different behavior of SAXPY

and matrix multiplication. In the latter, considerably more arithmetic operations

can be done on data once it has been rea.d from memory into the vector regis-

ters as compared to the former. There is therefore a much higher proportion of

floating-point operations in the overall operation count in the matrix multipli-

cation case and consequently higher performance. This observation is the key to

programming Cray computers for high performance: to seek tasks which re-use

data in the vector registers repeatedly, rather than using it once or twice. Ma-

trix multiplication is probably the most obvious example of this approach, and we

will generally try to show how it can be incorporated into user programs. Other

related kernels, such as solving systems of linear equations, are also considered

when we discuss particular computational chemistry tasks. In view of this central

importance of matrix multiplication, we shall explore some aspects of it further

here.

Reference has already been made to more general matrix multiplication

operations such as (III.1). Although this form is not available in the SCILIB li-

brary, not even in the simple form involving the constraints oe = 1 (or 0) and

/_ = 4-1, several groups have prepared subroutines to perform this task. For the

CRAY-2 the subroutine MXMPMA by Calahan et a,1. [23] handles the above form

with the constraints o_ = 1 or 0 and/3 = 4-1. This is a very efficient implemen-

tation that exploits local memory on the CRAY-2. Another aspect of more gen-

eral matrix multiplication is the exploitation of sparseness in the arrays A and B.

Where sparseness has its origins in the symmetry of a problem, it is usually more

advantageous to handle the symmetry explicitly, but it may often be useful to
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take advantage of essentially random sparseness. Saunders' routine MXMB [18] is

widely used in this situation: its performance is similar to the CRI MXM routine

for dense matrices so there is no loss of efficiency where there is little sparseness.

Another generalization of the simple matrix product is the case in which

either A or B is to be transposed before tile multiplication. The SCILIB rou-

tine MXMA allows for this possibility (mad for other variations on the index-

ing of the matrices, such as nmltiplication of sub-blocks of full arrays). The al-

ternative approach would be to explicitly transpose the arrays as required. On

the CRAY X-MP/48 it is our observation that there is little to choose between

these strategies. On the CRAY-2 for most array dimensions there is also little

difference, but there is a catastrophic loss of performance in MXMA when trans-

posing arrays with dimensions that are multiples of 256 because of severe bank

conflicts. In such cases the observed performance drops to some 18 MFLOPS,

about 20 times slower than the best rate. Several smaller dimensions, such as 128

or 64 also show a drop in performance, although not as great. While this can be

overcome by embedding the desired matrix in a larger array to avoid the critical

stride value, we normally prefer to explicitly transpose the matrix and use the

routine MXM. Since, as noted, this strategy incurs virtually no penalty on the

X-MP, we follow it on all Cra.y computers. This also increases the portability of

programs, as it usually easier to find an analog of MXM on other machines than

MXMA.

The technique of obtaining increased performance on Cray computers by

unrolling an outer loop is well docmnented [14], but it is perhaps less obvious that

this approach can be extended to more than one loop. In the matrix multiplica-

tion case this gives the following code fragment when two loops are unrolled to a

depth of two:

DO I0 J = I,N,2

DO 20 K = I,N,2

DO 40 1 = I,N

C(I,J) = C(I,J) + A(I,K)*B(K,J) + A(I,K+I)*B(K+I,J)

C(I,J+I) = C(I,J+I) + A(I,E)*B(K,J+I) + A(I,K+I)*B(K+I,J+I)

CONTINUE30

20 CONTINUE

10 CONTINUE
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Unrolling the J loop enhances performance by reducing the number of fetch in-

structions required for the elements of A, while unrolling the K loop reduces the

number of fetch and store instructions for the elements of C. As A and C are dif-

ferent arrays, these advantages are combined when both loops are unrolled, and

the overall efficiency is increased. Formally, the efficiency increases as the un-

rolling depth increases, but the finite number of vector registers, together with

the limits on the size of code block the compilers can optimize imposes an upper

limit to the useful depth of eight. CRAY-2 timings obtained with such a scheme

(both loops unrolled eight times) are given in Table g. Although the performance

is considerably improved over the case of FORTRAN loops without unrolling, it

is never as good as with MXM, so the latter would usually be preferred. An ex-

ception might be the case of equation (III.1) with _ different from zero or one.

The unrolled scheme can handle this case without the need to store a temporary

product matrix separately, as would be required if MXM was used.

For very large matrices there is some advantage in using specialized ma-

trix multiplication algorithms that require fewer than 2r_3 floating-point opera-

tions [24-26]. Many such algorithms use a recursive partitioning approach akin to

Fast Fourier Transforms, in which the matrices are multipled by blocks using ex-

pression rearrangement to eliminate some operations. The best of these schemes

behaves as roughly r_25 [26], but a simpler scheme, due to Strassen [24], which

behaves as about r_2"8, has recently been investigated on the CRAY-2 by Bai-

ley [27]. We can compare this approach with the library routines and also with

loop unrolling in FORTRAN. The results are displas_ed in Table 5. The routine

MXMPMA is the assembly language program written by Calahan et M. referred

to above [23]. It is this routine that is used to perform the block matrix multipli-

cations in the Strassen scheme. The performance figures for the latter are com-

puted assuming 2n a floating-point operations: for the large matrices (say, larger

than 500x500) they are distinctly better than the other values. Note also that

MXMPMA does not suffer from the bank conflicts that somewhat degrade the

library MXM performance for the 256x256 and 512x512 cases.

C. General performance.

Observed performance, given as 'roo and hi/2 values, for a number of op-

erations are given in Table 6. The SAXPY and matrix multiplication results of
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the previous subsectionare also reproducedfor reference. For elementaryvector
operations like addition, the code produced by the CFT77 compiler out-performs

the library subroutines on the X-MP and Y-MP, but the library versionsrun

faster on the CRAY-2. Performancefigures arealso given for sparsevector oper-

ations "SPDOT" and "SPAXPY" [22]. Theseallow for sparsenessto be exploited
in one vector: the SPAXPY for example is equivalent to the FORTRAN loop

DO I0 1 = I,N

A(INDEX(1)) = A(INDEX(1)) + SCALAK*B(I)

I0 CONTINUE

and is usefulwhen vector B has been compressed down to non-zero values whose

originaladdresses are stored in INDEX. SPDOT is simply the dot product equiva-

lent. These kernels are useful in quantum chemical calculations: the performance

of the library versions is quite good.

Polynomial evaluation using Horner's rule, such as

DO I0 I = I,N

A(1) = ((C3*X(I) + C2)*X(I) + CI)*X(I) + CO

I0 CONTINUE

for the cubic case, is very efficiently vectorized by CFT77 on the X-MP and

Y-MP, where for higher polynomial orders a substantial fraction (about 90_)

of the maximum machine performance is obtained. This indicates that the com-

piler is able to generate code to re-use data from the vector registers for this case.

Polynomial evaluation is a less fruitful approach on the CRAY-2, where the con-

vergence with increasing polynomial order is much slower.

Element-by-element vector division is a.lso shown in Table 6. Cray com-

puters have a reciprocal approximation unit but no floating-point divide hard-

ware, so division requires a reciprocal approximation, a multiplication to obtain

an estimate of the quotient, followed by a Newton iteration to give the required

accuracy in the quotient (see, e.g. Ref. 21). This step requires a subtraction and

two more multiplications. Even if the subtraction is chained with one multipli-

cation this process cannot run a.t more than 40 MFLOPS (strictly speaking at

40 megaresults per second) on our X-MP/48, and the observed performance is

noticeably less. However, if the division is pa.rt of a more elaborate computation,

for which data can be held in the vector registers and re-used, the overall perfor-

mance will be more satisfactory. The [2/1] rational fraction evaluation requires
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the same number of simple additions and multiplications as the cubic polynomial,

and also requires division, with its contributing multiplications and subtractions,

but the observed performance is still about two-thirds of the polynomial rate on

the X-MP and Y-MP, and is equa.1 to the polynomial rate on the CRAY-2.

For many purposes it is necessary to evaluate special functions, and the

performance of the FORTRAN library routines for several of these is shown in

Table 6. The rates here are quoted in :negaresults per second, and as these func-

tions can require 20 or more floating-point operations for their evaluation the per-

formance is seen to be rather good. It is interesting that this is one of the few

areas in which the CRAY-2 outperforms the X-MP. On all machines the square

root performance is substantially better than the other functions but is still not

competitive with elementary vector operations.

The last type of operation considered in Table 6 is data motion. On

the CRAY-1 data motion was an expensive task, with a performance for a

simple vector move of about 8 MW/s. With improvements such as hardware

GATHER/SCATTER all of the current Cray computers perform much better

than this, with vector move rates that are higher than operations like addition.

Data motion on the CRAY-2 shows a somewhat worse performance ratio to the

X-MP than that seen for elementary vector operations.

D. Multitasking on Cray computers.

As discussed in the Introduction, vectorization is not the only way to im-

prove performance on those Cray con:puters with several CPUs: it is also possible

to use several CPUs in parallel. The pros and cons of this approach, especially in

the context of multi-user systems, have been discussed elsewhere [28]. Multitask-

ing involves some overheads, so the total CPU time of a job will increase when it

is multitasked [1,2]. Any timing improven:ent therefore comes (in a stand-None

machine) from a reduction in wall clock time. Except for the case of large user

jobs that would be feasible only if run multitasked, where there is obviously no al-

ternative, system throughput on a production machine is generally best served by

minimizing user multitasking and maximizing multiprocessing (that is, "system

multitasking"). There can be circumstances that demand a different approach,

however. For example, we have previously discussed the "l/n rule" [28]: on a sys-

tern with n CPUs there will be no risk of CPUs becoming idle because of lack of
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system resources provided users are allowed to acquire no more than 1/n of any

resource. Clearly, if a user job rcq_Lires, say, all of main memory the user should

be encouraged to use all the CPUs, in order to keep the entire machine busy.

This is thus another motivation for investigating multitasking.

We concentrate here only on the performance obtained with multitasked

codes. First, it should be noted that in any multiprogrammed system the oppor-

tunity to use multiple CPUs will vary considerably with workload and the various

tuning parameters in the job scheduler. As a consequence, the performance mea-

sured for a multitasked job will commonly vary by a considerable amount from

run to run, making it difficult to compare different approaches and different ma-

chines. Some of the results presented here were therefore obtained during dedi-

cated access to a given machine. Second, multitasking is not yet a commonplace

activity on Cray computers, at least in our observation, and therefore some as-

pects of multitasking have yet to be properly debugged. Finally, we should point

out that, as a corollary of using dedicated time, some performance figures for the

CRAY-2 are quite different from those given in the previous section. The reasons

are discussed below.

Table 7 contains performance figures for matrix multiplication using

different numbers of CPUs on different, machines. This is a macrotasked ma-

trix multiplication in which the result matrix is divided into n column groups

(for n tasks), as described in detail in Ref. 28. The X-MP and Y-MP display

an essentially linear scaling with the number of CPUs employed, producing the

impressive figure of more than 2.3 GFLOPS when eight CPUs are used on the

Y-MP. The overheads associated with genera,tint the tasks and acquiring CPUs

are not included in Table 7, but if the matrix nmltiplication is repeated several

times within the job, as would probably be the case in a production code, the

mean overhead becomes negligible anyway. The CRAY-2 figures scale consider-

ably worse than n, even in a stand-alone environment. This has been discussed at

length elsewhere: it stems from bank conflicts in one task generated by the other

tasks. In a production environment the performance is even worse, as more bank

conflicts arise from other user jobs and from the context switching and job swap-

ping that occurs in multi-user mode. It, is this int, ei_ference between tasks that

makes such a difference between stand-alone and multi-user mode times for even

single-tasked jobs on the CRAY-2; it, is noteworthy that our stand-alone multi-
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tasked matrix multiplication performance results on four CPUs are about four

times the multi-user mode single-tasked results of section IIIB.

There is little value in repeating the above figures for microtasked ver-

sions of the matrix multiplication. These show essentially the same performance

improvements as does macrotasking in a stand-alone environment, while the ira-

provement possible in a production machine is an even stronger function of the

workload than is the case for macrotasked jobs, so there is no simple way to

quantify the performance observed. Microtasking is designed to utilize idle CPUs,

and under UNICOS this appears to be implemented by giving extra tasks forked

a very low priority (a high "nice" value, in UNIX terminology [29]). This means

that these forked tasks will get a very small share (although not a zero share) of

the CPUs, unless the number of user jobs in the system falls to such a level that

only the forking task and its children remain, in which case all will utilize the

CPUs. Obviously, in a dedicated environment a single microtasked job will uti-

lize all CPUs fully and perform like its macrotasked equivalent, while in a normal

production environment the forked tasks will accmnulate almost no time and the

result will be equivalent to the single-threaded version. On the other hand, an

"idle CPU" under COS seems to correspond to a CPU not busy with a task with

the same priority as the spawning task. Hence a high-priority job under COS will

generally be able to acquire CPUs as it desires, greatly improving its throughput

(and degrading that of other user jobs), while a similar job run at lower priority

will see much less improvement (if any). COS microtasking can thus impact other

users more than UNICOS microtasking, and for many COS production environ-

ments microtasking may be discouraged.

Overall, while multitasking can often improve performance, its use can be

counter-productive in a multi-user environment. Under COS, at least, it appears

desirable to have about eight jobs per CPU in the machine to ensure that no idle

time accumulates, and at present (with Cray computers of up to four CPUs ca-

pable of running COS) it should be possible in most production environments to

keep a machine busy simply by multiprocessing user jobs. This might not be the

case with 16 or even more CPUs, as the sophistication required in a job sched-

uler to cope with keeping so many CPUs busy would be considerable. It may also

be the case that for some environments in which very long jobs or jobs with very

heavy resource requirements are run that it is not possible to schedule jobs to
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keep all CPUs busy. Such situations are proba.bly better suited to the use of mul-

titasking, at least for some part of the time. A useful compromise for many users

would be to have microtasked versions of various library routines (especially ma-

trix multiplication) available, at least under UNICOS where there is less impact

of microtasking on other users. In this way the multitasking would be transpar-

ent to the user, but any idle CPUs could be utilized effectively. As noted above

microtasked libraries are promised by CRI.
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IV. Ab initio quantum chemistry

A. General observations

Many aspects of ab initio quantum chemistry program implementations

for Cray computers have been discussed elsewhere [18,30]. We concentrate here

on illustrating the general principles outlined above for efficient use of Cray com-

puters, with examples from the MOLECULE [31,32] and SWEDEN [33] program

systems. We discuss the evaluation a.nd sorting of integrals, the optimization of

SCF, MCSCF, and CI wave functions, and also several less conventional meth-

ods for different types of electronic structure calculations. As several authors have

emphasized [34-36], the calculation of energy derivatives (gradients, Hessians etc)

shares many features with the calculation of the energy itself, and for exigencies

of space we shall only discuss the latter here. Most of the techniques described

can readily be implemented in derivative calculations as well.

There is no intention here to instruct the reader in the details of efficient

programming; the "Optimization Guide" published by CRI for the X-MP se-

ries [37] can be consulted for such material. We shall discuss some of the broader

aspects of programming Cray computers, again under the assumption that the

codes to be written must be fairly easily ported to other environments.

B. Gaussian integrals and integral sorting.

Several reviews of methods for evaluating Ga.ussian integrals, with spe-

cial emphasis on vectorization, are available [38-40]: the comprehensive and lu-

cid article by Saunders [38] is particula.rly recommended. The evaluation of one-

electron integrals is straightforward and requires little time, and we deal only

with two-electron integrals here. We shall concentrate here on special features

of the MOLECULE integral program that are not covered by these reviews.

MOLECULE evaluates integrals over symmetry-adapted linear combinations of

contracted Gaussian functions; these contractions can be of either general [41]

or segmented [42] type. Basis functions can be either Cartesian Gaussians or

spherical harmonic functions -- in the latter case it is possible to include not only

"pure" spherical harmonics (ls, 2p, 3d, 4f) but also the higher principal quantum

number "contaminant" functions 3s, 4p, etc. As the previous reviews of integral

generation have only sketchily treated general contractions, symmetry adaptation

25



and transformation of Cartesians to a spherical harmonic basis (note that Saun-

ders discusses in detail the calculation of integrals directly in a spherical harmonic

basis), we shall treat these matters in some detail here. General contraction and

transformation to spherical harmonics are both rather time-consuming, but the

major part of the overall time is usually spent evaluating primitive integrals.

The algorithm actually used for evaluation of primitive two-electron inte-

grals in MOLECULE is based on the traditional factorization [43] into a product

of terms each involving one Cartesian direction, and an "auxiliary function" term

that must be evaluated by numerical approximation, symbolically

± = _ X_'_Zmrm(t) (IV.l)
DI

where rn runs from zero to a limit given by the sum of angular quantum num-

bers involved; Fm(t) is the "auxiliary function", t depends on the relative distance

between the various basis functions and their exponents. The efficient implemen-

ration of this approach requires that all functions from a given shell (that is, that

differ only in azimuthal quantmn numbers) be treated together. The factors Xm

can be obtained by recursion, as shown originally by Boys [44] and as exploited

in various forms by McMurchie and Davidson [45] and, recently, by Obara and

Saika [46]. The recursion scheme used in MOLECULE has many features in com-

mon with the latter approach, although it was originally derived some years ago

to help implement efficiently the integral formulas given by Huzinaga and co-

workers [43]. Like most integral algorithms, this lends itself to "extrinsic vec-

torization" [18], that is, a suitable nmnber of quadruplets of function exponents

(in effect, a list of t values) are treated together, so the various manipulations in-

volved in (IV.l) are pei{ormed for vectors of the desired length. This approach

to vectorization is simplest if tile terms grouped together are on the same set of

four centers, so that when there are only one or two functions of a given type on

each of the centers the vector lengths would be very short. The use of large prim-

itive sets is becoming more common, however, and this produces satisfactory vec-

for lengths in most cases. The values in the vector of t values vary over a wide

range in most calculations, and there is considerable sparseness to be exploited in

the use of (IV.l). It is convenient to compress the vector to only non-zero values,

compute the auxiliary function values for the compressed list and then expand

the result list back for use in (IV.l). This can be done in practice without requir-
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ing an index vector of the same length as the vector of t values because the latest

version of X-MP CFT can vectorize the loop:

J=O

DO I0 1 = I,N

IF (A(1) .GT. THR) THEN

J=J+l

B(J) = A(1)

ENDIF

I0 CONTINUE

Since the vector of t values can number upwards of 50 000 terms for a large basis

set, the elimination of the index vector can be very valuable on the X-MP. The

EXPAND operation that is the reverse of this compression is also vectorized by

X-MP CFT.

Given then a set of primitive integrals, how can these be contracted effi-

ciently using general contractions? This is, in effect, a four-index transformation

(ijlkl) = E E E E (pqlrs)TpiTqjT_kT_u (IV.2)
p q r s

but in cases where, say, six to ten primitives are contracted to two or three con-

tracted functions, the vector lengths in (IV.2) are simply too short for effective

performance when formulated in the conventional matrix multiplication scheme

(discussed in section IVD below). It is preferable to use a different approach for

each of the four partial sums in (IV.2): if the (pqlrs) are arranged in a rectan-

gular matrix I with column index p and a "compound" row index qrs, the first

partial sum for (IV.2) can be written

Iqrs, i = E Iqrs'pTpi" (iv.3)
P

For N primitive functions and n contracted functions this is, in effect, a matrix

multiplication of an N 3 x N matrix by an N x n matrix [47], where the more

conventional scheme would have rs fixed and would thus involve only N x N ma-

trices. As the Cray library matrix multiplication routines are organized to per-

form the work in the order that gives maxinmn_ vector lengths, the scheme (IV.3)

will be vectorized with an inner loop of length N 3. The next partial sum requires

a "transposition" of the result array I' to give indices q and the compound rsi,
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but this can be done straightforwardly either by an explicit transposition loop

or, implicitly, by using the Cray library routine MXMA (see section IIIB above)

to multiply matrices with non-unit stride between elements. For the CRAY-2,

as discussed above, the explicit transposition has the virtue of reducing the per-

formance losses arising from bank conflicts: no extra memory is required for the

transposition as the transposed I _ can overwrite the original I. The simplest solu-

tion is thus to use MXM throughout.

Once the contraction has been performed for all sets of angular quantum

numbers in a batch, it is possible (if desired) to transform to a basis of spherical

harmonic functions. There are several advantages to such a transformation. First,

and perhaps most importantly, if only the pure spherical harmonics are used the

dimension of the basis (a.nd therefore the length of the integral file) is reduced.

Even the decrease in d shells from six components to five can bring about a useful

reduction in the length of an integral file, while for a diatomic molecule the elim-

ination of the contaminants from a [Ss 4p 3d 2f lg] basis will reduce the length

of the integral file by considerably more than half. Again, the size of the matri-

ces that are involved in this process is rather small, especially for the commonest

higher angular momentum cases (d and f shells), so that it is advantageous to

use the same scheme as is used for the contraction transformation. However, the

arrays of transformation coefficients from Cartesians to spherical harmonics are

rather sparse, especially for the lower angular quantum numbers, so it is useful

here to have a matrix multiplication scheme that can exploit sparseness. Never-

theless, even with the Cray library matrix multiplication routines the work asso-

ciated with the transformation to spherical harmonics is a rather small fraction of

the total integral time [32]. Incidentally, it may be useful to retain the contam-

inants (and perhaps even eliminate the high angular spherical harmonics) if de-

sired, as methods that need continuum-like functions may require fewer functions

of 8p-type to describe a p-wave than they would of the usual 2p functions.

While the transformation from contracted Gaussian functions to

symmetry-adapted linear combinations (restricted in MOLECULE and in our dis-

cussion here to D2h and its subgroups) could be regarded as a four-index trans-

formation, various formal simplifications make a.n alternative approach prefer-

able. Most symmetry-adaptation procedures [48,49] can be viewed as implemen-

tations of the method of double coset decompositions presented by Davidson [50].
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A symmetry-adapted integral is given as

(paqfllr785) = N E _ _ _ Xc_(gi)X_(gj)XT(gk)XS(gl)(Oip gJq]Okr OlS)' (IV.4)

i j k l

where _... indexes irreducible representations, 0i... are operators from the point

group _, p... are atomic basis functions, and N is a constant involving both nor-

malization of the symmetry orbitals and selection rules on symmetry species.

This expression can be replaced [50] by the simpler form

J K L

Here N _ now incorporates the rules which select the unique (_ given the three

other irreducible representations. It, should be noted first that the number of

summations in (IV.5) is three, compa.red to four in (IV.4): (IV.5) clearly involves

less work. Second, the range of J, K and L in (IV.5) is easily restricted so that

only unique atomic integrals need be computed and employed in obtaining the

symmetry-adapted integrals [48,50]. (IV.5) can be vectorized very simply: as a

group of atomic integrals with the same angular properties and centers are mul-

tiplied with the same factors in (IV.5), each term in the triple summation can

be viewed as an element in a SAXPY operation. Thus the "symmetry transfor-

mation" can be vectorized as a set of SAXPY operations with length n 4 (in the

above notation). In fact, by forming the symmetry integrals for multiple quadru-

plets of irreducible representations at the same time, the atomic integral values

can be re-used several times once they have been read into registers, further im-

proving the efficiency.

It can be seen from the foregoing paragraphs that the various operations

we have discussed will involve either considerable data motion, or the use of non-

unit strides. Thus the contraction of primitive integrals requires the processing of

quadruplets of primitives for each quadruplet of angular quantum numbers, while

the transformation to spherical harmonics requires the processing of quadruplets

of angular quantum numbers for a given quadruplet of contracted functions. Fi-

nally, the generation of symmetry integrals requires the processing of different

quadruplets of centers, for a given quadruplet of angular quantum numbers and

contracted functions. Clearly, rather sophisticated index manipulations are re-

quired. Finally, we have tacitly ignored the use of permutational symmetry: in

(IV.5)
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particular, when the pairs of primitives that form the sets of charge distributions

are the same, numerous square blocks can be reduced to triangular arrays of the

distinct elements. This Mso complicates the index manipulations.

CRAY X-MP/48 timing results for some integral calculations on the

molecule N2 are given in Table 8. The basis set used is a (13s 8p 6d 4f 2g)

primitive set contracted to [5s 4p 3d 2f lg] using an atomic natural orbital gen-

eral contraction [51]. The contracted set comprises 140 Cartesian Gaussians, or

110 spherical harmonic basis functions when the contaminants are removed. We

shall use this N2 calculation for timing comparisons throughout this section. In

Table 8 it can be seen that the transformation to spherical harmonics requires

some 65 seconds on the X-MP/48, but the resulting integral file is less than one-

third the length of the Cartesian case. For this N2 calculation, the saving in time

in all later steps as a result of using spherical harmonic functions totals less than

35 seconds, so there is a net increase of CPU time required when spherical hat-

monics are used. The substantial reduction in external storage required makes the

trade-off worthwhile in most circumstances, however.

Table 8 also contains results for the N2 system treated in lower than the

maximum possible (in MOLECULE) D2/, symmetry. The C2v group used here

has the C2 axis along the bond, so the two centers are treated as inequivalent.

The C_ group is a subgroup of this C2v group. As the symmetry is lowered, the

integral time increases, although only slightly on going from D2h to C2v. In this

case there is a compensation between a reduction in overhead (as there are no

equivalent centers to be generated), and an increase in the number of integrals to

be calculated.

A comparison of the performance of the integral generation code on dif-

ferent Cray computers is presented in Table 9. The integrals are generated in

somewhat less time on the Ctl, AY-2 than on the X-MP/48: this is rather unusual

since for most steps in electronic structure calculations we usually observe the re-

verse. The improved performance on the CRAY-2 may derive in part from the

use of somewhat more memory -- 5 MW on the CRAY-2 as opposed to 2 MW

on the X-MP -- which allows longer vectors to be used in the primitive integral

calculation and reduces some overhead. The Y-MP performance for the integral

generation is very good: the Y-MP version uses 3.5 MW of memory, so some

extra improvement relative to the X-MP is expected beyond the shorter Y-MP
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clock period. What is observedis actually more than a factor of two, considerably

larger than is seenfor other codes. No ready explanation for this behavior offers
itself.

In addition to the parallelism discussedsofax',integral generation lends

itself readily to coarse-grainedmultiprocessing [28]. As eachbatch of integrals is

computedindependently, and assumingthe integrals can be produced in more or

lessarbitrary order (as discussedbelow they will generally needsomereordering

later anyway), it is possibleto compute different batchesin parallel. In fact, in-

steadof spawning a new task for eachbatch it is simpler to divide the range of
the four-fold loops over shells in the integral codeand executeeachsubrangeas

a separatetask. With such large granularity the overheadassociatedwith macro-

tasking becomesan insignificant fraction of the total time, and in a dedicated en-

vironment with n CPUs throughput improvements of very close to rt times are

seen [2S].

As will become clear in the succeeding subsections, it is highly desirable

to have the integrals ordered on the integral file. This is seldom consistent with

efficient integral generation, especially when symmetry is used both to reduce

the number of distinct integrals and in obtaining final integrals over symmetry-

adapted functions. Consequently, it is usually necessary to reorder the integral

file. The reordering of the one-electron integrals is, of course, trivial and we will

discuss only the two-electron case. The input/output aspects of this process,

especially the use of direct access storage, have been comprehensively reviewed

before [52], we will therefore concentrate here on vectorization and discuss in-

put/output only where it has some impact on vectorization.

The MOLECULE program generates four files of two-electron inte-

grals, partitioned according to the symmetry block structure of the integrals. For

D2h and its subgroups, there are four types of allowed quadruplets of symmetry

species: a_olol, olflt_fl, o_c_flp and a,/375 , where a etc denote irreducible repre-

sentations. Each of these types is written to a separate file, as each type can be

sorted independently of the others to give the final ordered list. Each raw integral

file comprises non-zero integrals together with labels containing the irreducible

representations of the four basis functions and their offsets within symmetries.

The first step on reading a buffer of integrals is to unpack these labels and iden-

tify the position(s) in the final ordered list, for tile given integral. The label un-
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packing, which consists of Boolean operations, and the computation of the final

position, which consists of multiplications and additions, can all be vectorized

over the number of elements in the buffer. The label packing in MOLECULE en-

sures that the compound indices in the label are strictly non-increasing within a

label, so that no conditional structures are necessary in vectorizing the label pro-

cessing during the read of the raw integral file. Although the calculation of the

position addresses involves (slow) integer multiplication and division, X-MP CFT

and CFT77 can generate code for performing these operations in the floating-

point units (the CFT compiler requires the directive FASTMD [37]). This im-

proves the performance of the loops involved by up to a factor of 20, and of the

program as a whole by more than a factor of two. If the number of ordered inte-

grals of a particular type is small enough to fit in main memory (which will of-

ten be the case for Cray computer memories and high symmetries) the final po-

sition addresses simply represent SCATTER. pointer elements into the ordered

list, and the raw integrals can therefore be placed in the desired locations with a

SCATTER operation, again with a length equal to the number of elements in the

buffer.

When the number of ordered integrals of a given type is too large to fit

in main memory, a bin sort of the Yoshimine type [52] is employed. The final po-

sition indices are used to identify the bins for each integral and its label. Here,

because of the possibility tha.t a bin may be full and require emptying before an

integral/label pair can be written to it, we encounter a step in the re-ordering

that cannot straightforwardly be vectorized. When these bins are read back, how-

ever, the only processing required is to use the final position index, offset by the

start of the subrange of integrals in a particular chain of bins, as a SCATTER

pointer for the integrals. Hence this part of the work is again vectorizable with a

length equal to the number of integrals in a bin. On Cray computers this length

can usually be several thousand. In fact, since the SCATTER operation will move

about 40 MW/s on the X-MP or 20 MW/s on the CRAY-2, it would appear to

be necessary to obtain at least the same I/O transfer rates into memory to pre-

vent the re-ordering from becoming I/O bound. With head contention and rota-

tional delays, and disk performance on non-striped mass storage systems, this is

hardly possible if the direct access bin file is disk-resident. However, the trans-

fer rate from an X-MP SSD into memory is around 156 MW/s per SSD channel.
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(Although some configurations have two SSD channels, it is extremely unlikely

in practice that a single user job will simultaneously have access to more than

one channel.) Thus if the bin file is entirely SSD resident the re-ordering step

will never become I/O bound. With current SSD sizes up to 512 MW and with

gigaword (GW) sizes available in the near future this will normally be the case.

SSDs are not available for CRAY-2 computers, but for a 256 MW CRAY-2 it will

very often be possible to re-order the integrals entirely within memory. Only for

large basis sets (upwards of 200 basis functions) and low symmetry will it be nec-

essary to use a bin sort and direct access disk, and so for most calculations the

re-ordering will not be I/O bound on the CRAY-2.

For high symmetries (which normally give multi-centered symmetry or-

bitals) and small molecules the only sparseness in the integral list will come from

symmetry. However, for lower symmetries and larger systems (that is for larger

distances between basis functions) there may be increasing sparseness in the in-

tegral list from the neglect of very small integrals in MOLECULE. It will often

be useful to exploit such sparseness to reduce the length of the ordered integral

list, as well as the raw integral files. On the other hand, if this is done simply by

adding a label word to each integral the sparseness must be greater than a 50%

reduction in order to see any reduction in the length of the list. Instead, the in-

dex locating a non-zero integral in the fllll list can be packed into the lowest bits

of the integral itself. As each buffer of ordered integrals fixes one pair index i j,

it is only necessary to pack the kl pair index, for which it is convenient to use

16 bits. This involves a loss of between four and five decimal places in the man-

tissa, which is acceptable for most applications, given the 14 digit precision on

Cray computers. The examination of the ordered integrals, prior to writing them

out, to check whether their magnitude exceeds some threshold, can be viewed as

building a GATHER pointer vector (strictly, a COMPRESS pointer): the subse-

quent GATHER and the packing of the GATHER pointer elements into the low-

est bits of the integrals can then be completely vectorized. The entire process can

be viewed as a "compressed index" vector operation on the X-MP [11], and under

CFT this can be vectorized by the compiler without any need to allocate space

for the GATHER index vector. The subsequent processing of such "compressed"

integrals is discussed below.

Timing for ordering various integral files is given in Table 8 for N2 calcu-
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lations on the X-MP/48. When spherical harmonicsare usedin D2h symmetry,

the ordering can be carried out entirely within 2 MW of memory. This is another

useful trade-off against integral generation time when using spherical harmonics:

the ordering takes five times longer overall when Cartesians are used, and unless

about 3.5 MW of memory is available requires either direct access disk or SSD

space. It should be noted that a request for this memory would incur a prior-

ity penalty on our X-MP/48, according to the "l/n" rule (see section IIID and

Ref. 28). When ordering in memory up to 1 000 000 ordered integrals can be pro-

duced per second, while for out-of-memory cases the observed best rate depends

on the symmetry. In high symmetry cases about 300 000 ordered integrals can

be produced in one second, but for the low symmetries this rate rises to more

than 500 000 per second. Table 9 contains results for integral ordering obtained

on various Cray computers. All of the results given are for sorting in memory.

The Y-MP results are somewhat faster than would be expected from the ratio of

Y-MP and X-MP clock periods, although the speed increase is not as great as

was observed for the integral calculation. The CRAY-2 is considerably slower in

this step than the X-MP, because of its much slower memory.

As we shall see, for some applications it is desirable to have a different

combination of integrals, such as the "P-supermatrix" with elements

P(ijlkl) = (ijlkl) - 1/4[(ik]jl) + (illjk)]. (IV.6)

For later convenience the "diagonal" elements ij = kl are usually halved. The

reprocessing of the ordered integrals to obtain these values can be handled us-

ing very similar techniques to those described above. In fact, as fewer symmetry

blocks of 7' are usually required than of the integrals themselves, the processing is

even simpler.

C. SCF calculations.

The most time-consuming part of most SCF calculations is the contrac-

tion of integrals with density matrix elements to build one or more Fock matrices.

For the closed-shell Fock operator F this process can be written as

Fij = E E 7)(ijlhl)Dk" (IV.7)
k l
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where D is the density matrix and 79 is the supermatrix introduced in the previ-

ous section [53]. Operationally, however, this step is driven by reading blocks of 79

from file: blocks corresponding to kl values for fixed ij such that kl <_ ij give rise

to two contributions

DO i0 KL = I,NKL

F(KL) = F(KL) + D(IJ)*P(KL)

I0 CONTINUE

DO 20 KL = I,NKL

F(IJ) = F(IJ) + D(KL)*P(KL)

20 CONTINUE

The first of these loops is clearly a SAXPY operation and the second is a dot

product. Hence these steps are immediately vectorizable. Further, if the vector

P has been compressed to only non-zero values these two steps can be viewed as a

sparse SAXPY and a sparse dot product, and are again vectorizable as described

in section IIIC above. A more complete discussion of this aspect can be found in

Refs. 28 and 54.

For open-shell energy expressions [53,55,56], additional Fock operators

must be built from other combinations of integrals, such as the/C supermatrix,

K.(ijlkl ) = 1/2[(ikljl ) + (illjk)], (IV.8)

and open-shell density matrices. Such work is obviously vectorizable in complete

analogy with the 79 processing described above. If multiple open-shell densities

are employed, the vectors of K values can be re-used from vector registers, enhanc-

ing performance. Alternatively, it is possible to read the 79 and ]C supermatrices

in separate tasks, thereby utilizing more than one CPU simultaneously. It is also

possible to use multiple CPUs to process different parts of the same supermatrix,

as discussed in Ref. 28. However, if no sparseness is employed the loops for con-

structing F run at 60 to 100 MFLOPS on the X-MP, and therefore (running the

two loops sequentially) require reading up to 25 MW/s from file to avoid becom-

ing I/O bound. Any tactic to increase the effective rate of CPU operations, such

as using multiple CPUs, obviously only increases the demands on the I/O system.

One possible solution, as discussed previously, is to keep the supermatrix files on

the SSD, another, discussed in more detail below, is to keep the files in memory

on the CRAY-2.
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The only other step in an SCF calculation that consumes anything but

trivial amounts of time is the Fock matrix diagonalization, and for most appli-

cations with up to 200 basis functions and symmetry blocking this step is quite

inexpensive. Although specially optimized matrix diagonalization routines (such

as the EISPACK library [57]) are available in CRI's SCILIB library, the require-

ments for SCF calculations are usually so modest that simple Jacobi or Givens

schemes are adequate.

The fraction of the SCF time required for Fock matrix construction is il-

lustrated by the N2 results of Tables 8 and 9. For the high symmetry calculations

50% or more of the SCF iteration time is used in this step. For the low symme-

try calculations the diagonalization of the Fock matrix is relatively more time-

consuming. For the D2h case the Y-MP results of Table 9 are essentially what

would be expected from its clock period, while the CRAY-2 results are rather

poor, given that the sparse dot product and SAXPY performance is expected

to be similar to that of the X-MP (see section IIIC). However, the X-MP and

Y-MP versions of the SCF code read 7) in large fixed-length blocks, so part of the

difference between these machines and the CRAY-2 may result from I/O over-

heads on the latter.

D. Integral Transformation

The treatment of electron correlation requires that the integrals be trans-

formed from the atomic orbital basis set to the molecular orbital basis set. The

computational aspects of this step have been extensively reviewed by Wilson [58].

Transformation of integrals can be implicit in some approaches, such as the

method of self-consistent electron pairs [59,60], or explicit, involving reading the

file containing the AO integrals, transforming these to the MO basis, and writing

a new file containing the MO integrals. Hybrid methods for treating the correla-

tion problem are also possible, where some contributions are computed in the MO

basis set and some directly from the AO integrals, thus requiring only a partial

transformation.

Without symmetry, the full transformation is of the order rnn 4, where

n is the number of basis functions in the AO basis set and m is the number of

MOs. First, it is obviously beneficial to minimize rn, and the simplest step in

this direction is to eliminate transforming to any orbitals which are not occu-
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pied in the correlation treatment. Furthermore, the contribution to the energy

arising from electronswhich are not correlated (the core) is straightforwardly ex-

pressedin terms of Coulomb and exchangeintegrals only (see,e.g. Ref. 61). This
is commonly accountedfor by constructing a coreFock operator to be added to

the one-electronintegrals. In our implementation, this coreFock operator can be
constructed using the supermatrix formulation describedabovefor the SCF pro-

cedure,or directly from the ordered integrals without further sorting. Clearly,

constructing the Fock operator from the supermatrix is faster provided the su-

permatrix already exists. However, if the supermatrix is not available, the work

required to construct one Fock operator directly from the ordered integrals is

roughly equal to the time to form the supermatrix -- this cost canbe amortized
over the iterations of an SCF calculation as the supermatrix is used a number of

times, but for the coreFock operator construction we prefer to avoid the extra

I/O of the sorting step and to construct the operator from the ordered integrals.

In addition to the savingsfrom avoiding transforming for coreor deleted

virtual orbitals, the overall work can be reducedby exploiting sparsenessin the

integral or coefficient arrays. While somereduction canbe effectedsimply us-
ing sparsevector or matrix arithmetic, in caseswhere the sparsenessderivesfrom

the symmetry of the system it is preferable to handle the symmetry explicitly.

The useof symmetry in the transformation can reducethe overall work by or-

ders of magnitude: if a basis set of n functions is symmetry adapted with n/2 ba-

sis functions in each of two irreducible representations, the work is reduced from

one transformation of order n 5 to four transformations of n 5/32, or an eightfold

reduction. Clearly, for systems with higher symmetry, such as D2h, the savings

would be even larger. It should be noted that the operation counts given here are

based on the assumption that the two-electron integrals are available in a basis of

symmetry orbitals. While there are schemes for obtaining the advantages of high

symmetry in the SCF step without the formation of symmetry integrals [62-64],

such schemes become very complicated for the transformation. However, as de-

scribed above the symmetry transformation in

very efficient, and the very large savings in the

that derive from it are real, not a consequence

marion into the integral evaluation. Of course,

adaptation procedure described in section IVB

the calculation of the integrals is

transformation (and SCF) steps

of moving work from the transfor-

the simple and efficient symmetry-

is restricted to D2h and its sub-
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groups (although see Ref. 50), but very few treatments of electron correlation are

implemented in higher symmetries anyway.

We now discuss our implementation of the transformation, starting with

the one-electron integrals. While this requires very little of the overall time, it

illustrates several aspects of the transformation of the two-electron integrals. The

transformation of the one-electron integrals, H, by the coefficient matrix, C, can

be written as

H' = CTHC. (IV.9)

but the one-electron integrals Hij are symmetric and therefore naturally stored as

i > j. If the integrals are stored only as this lower triangle, it is difficult to vec-

torize (IV.9). However, if the integrals are expanded to a square matrix (a matrix

T) the transformation (IV.9) clearly becomes two matrix multiplications. The

transformed integrals naturally form a square matrix, which can be compressed

to a lower triangle before being written to disk. Based on the timings reported in

section III above it is clear that a formulation in terms of matrix multiplications

will be very efficient on Cray computers. Hence if the squaring of the AO inte-

gral matrix or the compression of the transformed integrals is coded inefficiently,

these processes could actually become the rate-limiting step. That is, the pre-

and post-processing of the integrals, which are steps of order n 2, could take longer

than the n 3 matrix multiplication step, at least for any n that is likely to be en-

countered in present quantum chemical calculations. Two efficient approaches of

squaring (or of compressing) the matrix can be considered. In the first, a row is

moved from lower triangular storage to a. row and column in the square form.

IX=O

DO 10 I = I,N

DO 20 J = l,I

T(J,I)=H(J+IX)

T(I,J)=H(J+IX)

20 CONTINUE

IX = IX + I

10 CONTINUE

In the second approach a vector of length n 2 is used to hold a mapping into each

location in T from a location in H. Then by using a GATHER the matrix T can

be easily formed. Similar procedures can be used for the compress. (Note that
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many GATHER operations can be viewed alternately as SCATTER operations:

we use the term GATHER to describe either coding organization). In this ap-

proach there is obviously additional overhead in forming the GATHER pointers,

but in the transformation of the two-electron integrals the same steps occur so of-

ten that the cost of constructing the GATHER pointers once at the beginning of

the calculation is effectively amortized to zero.

Either approach to squaring a one-electron integral matrix works well on

Cray computers. However, on a machine with a large overhead associated with

starting vector operations, like the CDC CYBER 205 or some of the Japanese

supercomputers, the GATHER implementation is to be preferred. We have there-

fore implemented the GATHER approach since it gives us some additional porta-

bility.

For large basis sets the two-electron integral transformation poses some

problems in data handling. Yoshimine [65] has described an efficient process for

transforming two-electron integrals (pqlrs) into (ij[kl) that requires only a small

fraction of either (pqlrs) or (ij [kl) to be in core at one time, that is, an out-of-

core transformation. In successive steps a list of (pqlrs) is converted into a list

of (ijlrs), which is then transposed to a list of (rslij) mad transformed to a list

of (kllij). If the ordered integrals are stored such that for each r ___ s all p >_ q

values are present (this requires some double storage in the ao_aa and otfla/3 sym-

metry blocks) it is possible to read in the "rs row" of the integrals, square the

pq indices and perform a two-index transformation on this subset of the integrals

analogous to the one-electron integrals. This set of transformed integrals (rs[ij)

comprises all ij for fixed rs, and can be compressed to distinct integrals (i _> j)

only before being written to disk. We also compress the final transformed inte-

grals before writing them to file such that only the unique values are stored. That

is, any double storage in the aa, c_c_ and c_o_ blocks is removed.

Some additional considerations that were not encountered in the one-

electron transformation affect the coding of the two-electron case. For example,

the number of two-electron integrals can be very large and for extended systems

and low symmetries there may be many accidental zeros. As noted in section IVA

we have the option to store only those symmetry orbital integrals above a given

threshold: each rs row of integrals is compressed to an array of non-zero inte-

grals with the position index of each integral in the uncompressed row packed
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into its low-order 16 bits, these are written out with the number of non-zero pq

values. To expand these values to the full row we clear an array the length of

the full row, mask off the low-order bits into an integer array, and use this inte-

ger array as the pointer vector in a SCATTER operation. All of these steps are

veetorizable, so the process is very efficient. Another aspect of the transforma-

tion concerns the appearance of the transposed coefficient matrix C T in (IV.9)

above. Based on the observations presented in section IIIC, it is better to trans-

pose a matrix explicitly and use the SCILIB routine MXM than to use MXMA

to multiply by the transpose, as this minimizes problems with bank conflicts on

the CRAY-2. Of course, in the two-electron transformation the same C and C T

matrices are used repeatedly, so there is no loss in efficiency (and only a trivial in-

crease in storage) if we store both C and C T and use MXM. Where the integral

list is sparse because of accidental zeroes it would be advantageous to use a sparse

matrix multiplication routine like Saunders' MXMB [18], but at present we use

only the Cray library routines.

While formally the two-electron transformation process can be considered

as two series of two-index transformations, another complication relative to the

one-electron case is that a transposition of the results is required before the sec-

ond series of two-index transformations. In our implementation the transposition

is merged into the two-index transformations. That is, as each two-index transfor-

mation is completed the resulting integrals are moved into bins for the direct ac-

cess I/O. It is important to note that this process is actually a transposition and

not a sort, so there is no index calculation: the first w elements go into bin 1, the

second w into bin 2 etc; the value of w is determined by the available memory.

This step can be coded as a series of vector moves into the bins. The transposi-

tion step is also merged with the second half-transformation: after the contents

of a chain of bins is SCATTERed into memory, all related two-index transforma-

tions are performed and the fully transformed integrals are written to disk. The

process is then repeated for the next chain of half-transformed integral bins.

Another special circumstance in the two-electron transformation arises

for symmetry types o_¢/c_ and o_¢t76 , since there is no permutational symme-

try between r and s or between p and q in integrals (pqlrs) of these symmetry

types. There is therefore no need to square raw integrals or to compress trans-

formed integrals in these cases. However, handling the different cases does not
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give rise to any noticeable overhead, as we separate the various symmetry types

at a very high level (see IVB above). Overall, the inclusion of symmetry involves

rather straightforward coding and introduces little overhead, but provides enor-

mous gains in performance.

Two-electron integral transformation timing data for our N2 example are

given in Table 9. The CPU times are effectively negligible in comparison with

other steps (notably the integral evaluation) on all machines. As ordered inte-

grals are used as input, and only a transposition is required after the first half-

transformed step, the wall clock times are also very small. The CPU times given

correspond to a rate of around 50 MFLOPS on the X-MP and CRAY-2, and

65 MFLOPS on the Y-MP. There is actually rather substantial overhead in these

times: if a transformation is performed for the C1 symmetry N2 calculation de-

scribed in section IVB the X-MP/48 CPU time required is 324 seconds, but the

rate increases to 150 MFLOPS. Thus the use of D2h symmetry in this case gains

a factor of 38 in CPU time, but there is a concomitant threefold loss in perfor-

mance because of the overheads involved in processing numerous rather small

symmetry blocks. For a very large basis, in which the transformation overheads

would be amortized to nearly zero, the use of D2h symmetry would give an im-

provement of more than two orders of magnitude over the no symmetry case.

As expected, the out-of-core transformation described here works

very well on Cray computers. However, on some other computers, such as the

CDC CYBER 205, the large vector start-up overhead leads to poor perfor-

mance for even the larger matrices. Therefore we have also programmed an in-

core transformation. We use a modification of the Bender approach [66]. As in

the out-of-core scheme we separate those cases with and without rs permuta-

tional symmetry. The first half-transformation is replaced by two matrix mul-

tiplications. By ignoring the permutational symmetry between pq and rs, (that

is, the _aa case is treated as c_c_ and the c_c_¢? case as c_76), the second

half-transformation can be written as long SAXPY operations. The redundant

integrals for the c_ac_o_ and a/?c_ cases are eliminated using a precomputed

GATHER pointer vector. This organization yields excellent performance on the

CYBER 205. As this approach eliminates the transposition and I/O, it also yields

essentially the same performance as the out-of-core approach on all Cray comput-

ers, for those calculations for which the transformed integrals can be held in core.
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By having both an in- and out-of-core transformation we thus have some

additional portability without sacrificing any performance. The program de-

scribed is sohighly vectorized that the n 5 transformation step commonly repre-

sents an insignificant fraction of the total time. This is very different from the

situation on scalar machines.

E. Full Configuration Interaction

The full CI (FCI) procedure, the use of all configurations that can be

constructed from a given one-particle basis set, is aia exact solution to the corre-

lation problem for this basis set, and therefore stands as an unambiguous test of

approximate methods. Due to recent advances in full CI methodology (principally

in vectorization) and developments in computer hardware it has been possible

to perform an important series of benchmark calculations [67,68]. Of course, it

is still not possible to perform FCI calculations for large basis sets and problems

of chemical interest, but it is nevertheless instructive to begin our discussion of

correlated wave function generation with the FCI method. Its simplicity makes

it ideal for explaining some of the concepts of vectorizing other approaches, and

FCI wave functions in a limited one-particle space lie at the heart of the CASSCF

method. We therefore consider the FCI approach first and then proceed to the

other methods.

In most modern CI calculations, with any type of configuration space,

the Hamiltonian matrix is too large to be held in memory, and therefore an iter-

ative diagonalization procedure is required to obtain the CI energy eigenvalue(s)

and eigenvector(s). This is true even on the CRAY-2 when configuration spaces

of order 106 and more are to be handled. The Davidson diagonalization proce-

dure [69,70] is most commonly used. This method has several advantages, one

of which is that it imposes no constraints on the order in which matrix elements

are processed. This allows the matrix elements to be computed in an order that

achieves the maximum overall performance, whereas techniques that implicitly

require access to, say, one row of the matrix at a time might lead to intolerable

degradation of performance. The key is thus to form efficiently the residual vector

or, the product of the current estimate of the CI eigenvector c and the Hamilto-
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nian matrix H. This step canbe written as

p q r s L

(IV.IO)

where B are the "coupling coefficients". Siegbahn pointed out [71] that if the

known factorization of R KL into products of one-electron coupling coefficients
--pqrs

(using a resolution of the identity),

BKL AKJAJLpqrs = _ (IV.11)"-pq --rs ,

J

is explicitly inserted into (IV.10), it is possible to vectorize the calculation of

very straightforwardly. First, the product of one set of coupling coefficients and c

is collected in D,

DL = Ar JLeL. (w.12)
L

This can be implemented as a set of SAXPY operations involving the elements

of the very sparse matrix A. A matrix multiplication of the intermediate array D

and a block of the integrals is performed,

J
Epq = _-'_,(pqlrs)DJ_.

re

(IV.13)

The intermediate array E is then contracted with the second set of coupling coef-

ficients to form a contribution to or,

Crl( _-- _ E --pqAKJI:i]_J--Pq" (IV.14)
J Pq

This operation is a matrix-vector product. It is clear that all steps in the calcu-

lation of a can be vectorized, given that all the necessary quantities are available

as needed. This is easily arranged for a, c and the integrals (the latter can be

stored in memory for any MO space it is feasible to use in a full CI calculation).

The handling of the coupling coefficients A requires more attention. As there

is a rather large number of A t(L elements these must either be pre-computed--pq

and stored on disk (sorted to an order which allows vectorization of (IV.12) and

(IV.14)) or computed on the fly as required in these two equations.
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Siegbahn originally introduced this method [71] to improve the perfor-

mance and increase the size of the FCI step in CASSCF calculations. In this

context it was considered appropriate to use spin eigenfunctions as the configu-

ration basis and to compute and store a list of the coupling coefficients on disk.

This would require a great deal of disk space for large calculations, but is accept-

able for calculations with up to, say, 12 electrons and 12 orbitals in the FCI. For

larger calculations, disk space would become excessive, even though the CPU time

requirements would remain acceptable, so that disk space becomes the limiting

factor. Knowles and Handy [72] showed that by using determinants instead of

spin eigenfunctions as the configuration basis the non-zero values of A KL (all of

which then become 4-1) can be computed on the fly. The CI vector c is several

times longer in a determinantal basis, but this is no handicap on computers such

as the CRAY-2. In this way FCI calculations can be performed using very large

expansions, providing a means of benchmarking approximate methods as well as

performing large CASSCF calculations. The trade-off of memory (and, perhaps,

CPU time) for disk storage is, of course, not an uncommon feature of program-

ming modern supercomputers: we discuss below other trade-offs that would not

have been considered a few years ago when CPU power was the limiting factor.

As the most time-consuming step in the FCI algorithm (IV.12-14) is

a matrix multiplication, the code is very efficient on Cray computers. This has

allowed calculations as large 28 000 000 determinants to be performed on the

CRAY-2 [73]. Such a calculation requires on the order of 100 minutes of CRAY-2

CPU time per FCI iteration: something over 90% of this time is spent in matrix

multiplication. As c, _r and some scratch arrays must be held in core, the mem-

ory required for such a calculation is about 60 MW, which is perfectly feasible on

the CRAY-2. However, the Davidson diagonalization process requires the e and

vectors from the previous iterations. Therefore, just as storing the coupling coeffi-

cients can exhaust the disk storage long before the CPU time become prohibitive,

so can the need to store the previous c and a vectors. As Davidson noted [69], it

is possible to "fold" all the previous vectors into one vector, effectively starting

again with the current estimate of the eigenvector as the starting guess. While

this can slow convergence somewhat, it can reduce considerably the disk storage

required. In effect, the CPU performance and the high degree of vectorization,

compared to the disk performance and space limits, mandate implementing the
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folding procedureif the largest possible FCI expansionsare to be considered.

In addition to the larger dimensionof the FCI problem using a deter-

minantal basis, there is another difficulty: the potential collapseof a desired

higher root of the secularproblem to a lower root of a different spin symmetry

due to numerical rounding [74]. This canbe a severeproblem in the application

to CASSCF wavefunctions, wheremany roots of the secularproblem may be re-

quired in investigating problems related to spectroscopy.Recently, Malmqvist et

al. [75] have developed a method for using spin eigenfunctions of the desired sym-

metry (configuration state functions, CSFs) instead of determinants, but without

the need to store the coupling coefficients on disk. In their approach the graphical

unitary group representation of the CSFs is used (see, e.g. Ref. 76). The graph

that defines the configuration space is split into an upper and lower portion, and

at each graph node on the dividing line contributions to the product (IV.12) are

computed and accumulated using matrix multiplication. This requires subsets

of coupling coefficient Apt_qL for each portion of the graph, plus some "partial co-

efflcients" for cross-terms between the two portions. All of this coupling coef-

ficient information can be held in memory, even for large configuration spaces

(100 000 CSFs and more). Such a.n approach seems ideal for the CASSCF prob-

lem where the number of active orMtals is limited, but may not be suitable for

the large calculations used for benchmarking. It is clear that this is currently an

active area of research, and as yet the best method of performing FCI calculations

may not have been achieved. However, even the current approaches illustrate the

very high level of vectorization that can be achieved in CI methods for solving

the correlation problem. They also illustrate the need for careful thought about

trade-offs in disk storage, memory use and CPU time in order to maximize the

size of problem that can be solved.

F. Symbolic formula tape for multireference CI calculations.

The most general type of large-scale CI wave functions in current use is

that comprising a set of reference CSFs and all CSFs singly and doubly excited

with respect to these reference CSFs. The first task in generating such a wave

function is to evaluate the coupling coefficients involved in the various Hamil-

tonian matrix elements. We begin by classifying the MOs into inactive, active,

and secondary orbitals. The inactive orbitals are doubly occupied in all reference
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CSFs(but can have other occupations in the CI configuration space-- orbitals
which are alwaysdoubly occupied are absorbedinto the effectiveone-particle
Hamiltonian as describedin section IVD). The active orbitals have different oc-

cupations in different referenceCSFs and the secondaryorbitals are unoccupied
in the referenceCSFs. Classesof configurations can be definedby their internal

occupation, or internal for short. An internal occupation consists of a particular

sequence of active and inactive orbitals containing n, n - 1 or n - 2 electrons al-

together. Those internal occupations that contain n electrons give rise to valence

configurations simply by emmaerating the possible spin-couplings with which they

can appear; valence configurations must have the same spatial symmetry as the

desired CI root and must differ from a reference occupation by no more than a

double excitation. Internals with n - 1 or n - 2 electrons are incomplete, in the

sense that to obtain CSFs it is necessary to add one or two secondary orbitals to

the occupation. Evidently, a given n - 2 internal, say, can generate a set of CSFs

by coupling in different pairs of secondary orbitals with different spin-couplings.

Again, the resulting n-electron occupations are constrained to differ from the

reference occupations by no more than a double excitation. By expressing a CI

configuration list in this manner it becomes clear that the same coupling coeffi-

cient applies to a large set of matrix elements; the coupling coefficients are deter-

mined essentially by the internals from which the CSFs are derived, so that the

particular secondary orbitals that appear are irrelevant. Therefore, if the coupling

coefficients are computed for all possiMe internal-internal interactions, all of the

required CI matrix elements can be computed using the appropriate integrals and

these coupling coefficients.

In the first direct CI programs the unique coupling coefficients were com-

puted by hand and coded into the program [77]. The types of wave function for

which this is feasible are very restricted, and programs following this approach

were available only for single reference configuration wave functions based on a

closed-shell determinant or a UHF determinant. The direct CI approach became

much more general once Siegbahn [78,79] combined the factorization of CSFs

(and of coupling coefficients) into internal and external parts with the graphical

unitary group approach as formulated by Sha.vitt [80]. Several variations on this

idea were implemented, but most suffered from some limitations in the calculation

of the coupling coefficients, a step formulated as essentially a set of scalar opera-
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tions. Once the coupling coefficientswereevaluated,on the other hand, the calcu-

lation of the eigenvalueswasvery efficient, just as in the FCI case,and we discuss

this aspect in more detail in the next sub-section. The problem in the evaluation

of the coupling coefficientswasmost severein the casethat the number of refer-
encesactually usedwas a small subsetof thosepossiblefor a given choiceof ac-

tive and inactive spaces,which is unfortunately a rather common case. One alter-

native approach would be to avoid the unitary group and usea more conventional

CI approach. The internal occupations aregenerated,together with all possible

spin-couplingsto which they give rise (including coupling of one or two electrons

in model external orbitals if required). The occupationsare compared to iden-

tify potentially non-zeromatrix elements,and the coupling coefficientsevaluated

betweenprototype CSFsrepresentedby the individual spin-couplings. Suchan

approachhasbeen implemented [81], but although it can avoid someof the prob-
lemsassociatedwith the unitary group approach, the calculation of the coupling
coefficientsis still not vectorizable.

Recent work along quite different lines by Knowlesand Werner [82] and

by Siegbahn[83]has enormously simplified the calculation of the coupling coef-

ficients. This new approach again exploits the factorization of the two-electron

coupling coefficientsinto sumsof products of one-electroncoupling coefficients,

as in (IV.11). First, the internal occupations aregenerated. In computing the
one-electroncoupling coefficientsa product form is used: a fictitious MO a is in-

troduced which is unoccupied in all the internals, whereupon we can write

A_; L = N-" A TM A ML (IV.15)
--pa --aq ,

M

where M is an "internal" to which a has been coupled. The A TM values are very

simple to calculate and the values can be held in memory. In evaluating the two-

electron coupling coefficients, pairs of internals are compared and the type of cou-

pling coefficients that arise are identified (these types are determined by the or-

bital differences between the pair and the open shells they contain). The coupling

coefficients between all CSFs that can be derived from the pair of internals are

then evaluated by matrix multiplication of the stored one-electron terms. The

corresponding formula tape entry comprises the internal labels, the label of the

integrals (or blocks of integrals) that appear, and the coupling coefficients. In
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this approach there is little redundant work evenwhere only a few of the pos-

sible referenceoccupations arising from a given active spaceare used. Further-
more, unlike the approachusing prototype CSFs describedabove,the evaluation

of the coupling coefficientsis highly vectorized. The program that weuse was

developedby Siegbahn[83] and performancebetter than 50 MFLOPS hasbeen
observedon the X-MP/48. Sometiming results are given in Table 10. For our

N2 example the coupling coefficientsfor singleand double excitations from a sin-

gle closed-shellreferenceCSF (16 internal occupations) requiresmuch lessthan
one CPU second,while for the caseof a CAS referencespacethat gives rise to

2804internals the coupling coefficientsrequire 12.5seconds.Thesevery recent

developmentsmeansthat the rate-limiting step in an MRCI calculation is in the
calculation of the eigenvector,and the excellentperformanceof the new approach

allowsvery large referencespaces:the calculation of the coupling coefficientsfor
more than 60000 internals requiresabout 700 secondson the X-MP/48.

G. Multireference CI eigenvaluedetermination

The FCI calculations describedaboveshowthat it is possibleto achieve

very high performance in the eigenvaluedetermination through the formulation of

the time-consuming step in terms of matrix multiplication. The factorization into

internal and external contributions in the multireference direct CI (MRCI) case,

with the consequent association of a set of CSFs and an array of CI coefficients

with each internal occupation, is also very well suited to a matrix multiplication

formulation [81,84-86], and so again very high performance should be possible.

On the other hand, there are substantial differences between the FCI and MRCI

cases, resulting mainly from the fact that all orbitals in the FCI calculation are

classified as part of the same orbital space and their number is so small that all

integrals can be held in memory, while in the MRCI calculations there is a dis-

tinction between occupied and secondary orbitals, and it is seldom possible to

hold all the integrals in memory. For Mt]CI calculations, additional data-handling

involving sorting both integrals and coupling coefficients must thus be performed.

If i,j, k... are active or inactive orbitals and a, b, c... are secondary orbitals, the

types of interactions between internal occupations can be classified by the type of

integrals required: (ilhlj), (alhli), (alhlb), (ijlkl), (ailjk), (ablij), (ailbj), (ablci),

and (ablcd). Each class of integrals contributes to a limited number of types of
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interaction. Therefore the determination of the eigenvaluefirst involves sorting

the integrals into classes, and to a given order within classes. The formula file is

sorted during its generation to have the same organization of types as the integral

file. In each MRCI iteration the program loops over each type of interaction and

within each type a block of coupling coefficients is read. If these coupling coeffi-

cients refer to a new block of integrals, these me also read in. In our organization,

the formulas and integrals are ordered so that the integral and formula files are

read only once per iteration, and of the order of N_, o integrals are required to be

in memory at one time, where NMO is the number of MOs.

Each possible interaction is treated in a subroutine specific to the inte-

gral class: the details of the treatment have been extensively reviewed by Saun-

ders and van Lenthe [86], and we will not repeat them here. As shown in Ref. 86,

most types of interaction can be reduced to multiplying a block of integrals by

coupling coefficients, and then a subsequent matrix multiplication of the results

by a block of CI coefficients. (In practice, the block of integrals may actually be

a sum of two different blocks multiplied by two coupling coefficients.) The final

matrix product is added to a block of the a vector, so there is some saving of

memory if the matrix multiplication routine allows the product to be added to

(or subtracted from) the destination array.

Symmetry is used in all sections of the CI code, just as in the transfor-

mation. This includes the index permutation symmetry of the integrals as well as

the spatial symmetry. If P indexes a particular n - 2-electron internal, for exam-

ple, the coefficients of the distinct double excitations generated by coupling to P

can be written as an array

c_pb V a > b. (IV.16)

Such arrays display the same permutational symmetry as one-electron integrals: if

a and b are of the same symmetry type the array is triangular, while if they are of

different symmetries the array will be square. Some contributions to a will then

be required only as lower triangles, as the blocks of cr have the same structure

as those of c. In such cases we must square the block of integrals and CI coeffi-

cients, in the same manner as in the trmasformation, form the necessary product

and then fold the two halves of the product matrix together to add to the a vec-

tor. These squaring and folding operations are vectorizable, as discussed in IVD

above, and take only a small amount of time. Therefore, while an MRCI calcula-
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tion involvesa far more complex organization than the FCI schemediscussedin

IVE, eachindividual step is vectorizable and very high performance canbe ob-
tained. We have been able to routinely perform calculations involving 1 million

CSFs and have on occasionperformed calculations involving more than 4 million

CSFs.

Sometiming results are presentedin Table 10. For N2 with the 10va-
lenceelectronscorrelated and an SCF referencethe direct CI iteration time is less

than 1 secondon the X-MP/48. This calculation involves17626CSFs. The ob-

servedperformance is about 44 MFLOPS: lowering the symmetry to C2v dou-

bles the iteration time but also improves the performance to 66 MFLOPS. In the

limit of no symmetry about 140 MFLOPS would be obtained. Hence for very

large basis sets, in which the overheads have become negligible, we may expect

single reference direct CI performance of about 140 MFLOPS on the X-MP/48.

In multireference cases, the performance is somewhat higher. For example, tim-

ing for an N2 calculation with a CAS reference space (six active electrons in six

active orbitals, giving 32 reference CSFs) is also given in Table 10. The iteration

time of about 80 seconds for almost 730 000 CSFs corresponds to an average of

50 MFLOPS. Hence in very large (or low symmetry) cases we may expect MRCI

performance of better than 150 MFLOPS. A breakdown of the that part of the

iteration time concerned with the three most time-consuming classes of integrals

processed is also given in Table 10. The (aiIbj) integrals (this actually includes

(ablij) integrals as well) require the most effort, followed in this case by (ailjk)

and (ablcd). For very large basis sets the latter are expected to dominate, but

this case is rarely observed in practice. Finally, we note that on the CRAY-2 the

observed times are up to twice as long as on the X-MP/48: these N2 calculations

involve multiplication of rather small matrices and the matrix multiplication per-

formance on the CRAY-2 will suffer somewhat. On the other hand, the iteration

times on the Y-MP are about 2/3 of those on the X-MP, suggesting that large

MRCI calculations will run at well over 200 MFLOPS on the Y-MP.

H. CASSCF calculations

The CASSCF approach can account for near-degeneracy correlation ef-

fects and correlation contributions that vary rapidly with geometry [87]. It can

thus supply an excellent zeroth-order description for use in the MRCI approach.
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We employ a two-step, uncoupled MCSCF optimization scheme [88], which in-

volves a transformation of the integrals, determination of an FCI wave func-

tion, construction of a gradient vector and Hessian matrix for the energy depen-

dence on orbital rotations, and solution of the simultaneous linear equations of

the Newton-Raphson method for obtaining improved orbitals. In practice, far

from convergence it is better to use a first-order approach for optimizing the or-

bitals [89,90], in which case an approximate Hamiltonian matrix over single ex-

citations must be constructed instead of the Hessian; this Hamiltonian matrix is

then diagonalized in order to obtain improved orbitals. We now consider each of

these steps in more detail.

Just as for the MRCI case discussed in the previous subsection, different

classes of integrals are required in a CASSCF calculation. For the CI step, only

integrals with four active orbital indices are required (the inactive orbital con-

tributions can be absorbed into the one-electron operator, as discussed in IVD

above), while for the gradient of tile energy with respect to orbital rotations,

integrals with three active orbital indices and one index that runs over the full

MO space are required. Finally, for the orbital rotation Hessian, integrals with

two indices running over the full space and two over the space of occupied (in-

active and active) orbitals are required. We compute all integrals required for a

given MCSCF iteration in the same transformation step. The two-electron inte-

gral transformation is performed in a manner very similar to the full two-electron

transformation described above in IVD, but there are some special features added

because only certain classes of transformed integrals are required. For example,

if rn, n... denote occupied MOs and p, q... all MOs, it is clearly advantageous to

obtain integrals (pq]rnn) and (prnlqn) by first transforming integrals over in-

dex n and then over q. In this way no step in the transformation scales worse

than MN 4, for N AOs and M occupied MOs, an N/M-fold reduction over the

full transformation. Further, the ranges used in the second half-transformation

can obviously be modified depending on which MO indices appear in the half-

transformed integrals. Some care is needed in this approach when symmetry is

used. Thus if the integrals (pc_qolm_n_) are required, where a and fl label irre-

ducible representations, it would be necessary to perform a full transformation on

the a symmetry indices at the outset if the aafl/3 AO integral block is to be pro-

cessed only once. Instead, following Roos [91], this block is processed twice in the
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first half-transformation, once as c_c_/3/_ and once as _/_aa. In this way the first

transformation step always scales as/_rN 4. The same strategy is employed for

the a1576 blocks as well.

The FCI calculation is handled using the factorized coupling coefficient

approach of Siegbahn [71], as described in section IVE. The construction of the

orbital Hessian requires a very small amount of time and in our current version

is still scalar code. The solution of the simultaneous equations is performed us-

ing an iterative scheme analogous to the Davidson diagonalization [69]. As we are

normally able to store the full orbital Hessian in memory, the matrix-vector prod-

uct needed in the iterations can be performed one row at a time, it is then iden-

tical to the construction of the Fock matrix (eqn IV.7 above) and is implemented

as a SAXPY and a dot product. (The handling of the approximate Hamiltonian

matrix appearing in the first-order optimization scheme is very similar.) Note

that for very large cases (or in the absence of symmetry) this step could also pro-

ceed as for the Fock matrix construction by storing the ordered rows on disk and

re-reading them in each iteration. If necessary, the same compression techniques

as used for the SCF supermatriees could be employed, together with a sparse

SAXPY and dot product.

The time-consuming steps in a CASSCF calculation are thus vectoriz-

able, and using these techniques we have been able to perform calculations involv-

ing about 40 000 CSFs and a basis set of about 200 functions. For the N2 exam-

ple we have used in these discussions the CASSCF iteration time is dominated by

the integral transformation (which takes only a few seconds on the X-MP/48),

the orbital optimization step requires one second and the CI time is negligible

(and is anyway almost entirely overhead for this case -- 32 CSFs). For a configu-

ration space of some 3500 CSFs the CI step requires about five seconds per direct

CI iteration, while spaces of 40 000 CSFs would require about 80 seconds on the

X-MP.

I. Avoiding I/O, direct methods

One of the constraints on how efficiently calculations can be performed,

as we have repeatedly noted, is the rate at which data can be retrieved from sec-

ondary storage. SSDs provide a partial answer to this problem for X-MP (and

Y-MP) machines, but these devices are not available for the CRAY-2. However,
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the large central memory provided on the CRAY-2 and planned for the CRAY-3
providesa possible alternative: that of memory-residentdata sets. One obvious

technique is to generatethe integral list in memory for usein subsequentSCF

steps. With the useof high symmetries (generating only symmetry-distinct inte-

grals) and pre-screeningtechniquesto eliminate small integral batches,it is pos-
sible to perform calculations with 500 basisfunctions or more in 150MW or less

on the CRAY-2 [28,92]. It is advantageousto avoid storing labelswith the inte-

grals by processingthe list using the sameloop structure aswasusedto generate
them: in the first "SCF iteration" the non-vanishingdistinct integrals are com-

puted, stored and usedin the Fock matrix build, and a flag is set in an index list

to indicate that a particular batch wascomputed; in subsequentiterations the

sameloops are executed, skipping all processingif the batch wasnot computed

and simply retrieving the batch from memory for the Fock matrix build if it was.
While there is someoverheadassociatedwith the repeatedexecution of the outer

loops of the integral generation code, considerablestorageis savedby eliminating
labels. As the flag for eachbatch ca.::be representedby a singlebit the index list

requiresalmost no space. The whole schemerequireslittle more CPU time than
a conventionalSCF scheme,but eliminates almost all I/O processing.This ap-

proach hasalso been used to reduce the I/O associatedwith the perturbed SCF
and CASSCF wavefunction generation in the ABACUS analytic derivative pro-

gram [93,94].

A more drastic approach to the elimination of I/O is not to store large

data sets(such as the AO integrals) but to recomputethem as required. This is

the philosophy behind the "direct SCF" schemeof AlmlSf and co-workers[47,95].

Viewed naively, this appears to representa trade-off betweenthe CPU time re-

quired to generatethe integrals and the I/O overhead(and storagerequirements)
associatedwith repeatedly retrieving them from secondarystorage. However,it

is perfectly possiblefor machineslike the X-MP or CRAY-2 to generatethe inte-

grals over basis setsof 1500functions or more in reasonableCPU times (say,on

the order of hours); that is, to generatean integral list far larger than the capac-

ity of most supercomputer secondarystoragesystems. In sucha casethe ques-
tion of a trade-off doesnot even arise,as the conventionalapproach would not

be feasible. Of course,sincethe integrals must be regeneratedin eachiteration,
it is desirableto minimize the number of iterations and to eliminate asmany in-
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tegrals as possible, as well as using the most efficient scheme possible for com-

puting the integrals. These aspects, together with timings, have been discussed

elsewhere [47,95,96], as has an interesting hybrid approach with explicit storage of

some integrals [97].

The extension of this direct approach to MCSCF and CI calculations has

also been discussed, but only in purely formal terms without computational im-

plementation [98]. Very recently, however, Saeb¢ and AlmlSf [99] have developed

a program for computing the MP2 correlation energy using a direct approach.

Such a scheme can be regarded as a first step towards implementing a CI method,

as well as generating results which are very useful in themselves. The MP2 en-

ergy requires MO integrals of the form (ialjb), which are most efficiently obtained

not by transforming the charge distributions, as described above, but by trans-

forming the first and third indices as the first pair, then the second and fourth.

It is obvious that this requires an integral list that is four times longer than the

"canonical" list, that is, double the length required for the conventional transfor-

mation. In a direct approach to MP2, then, about four times as many integrals

must be calculated as in an SCF iteration, so it would be expected that the MP2

energy would require about four times the CPU time of a direct SCF iteration,

assuming that integral generation is the dominant step. This is essentially what is

observed in practice by Saeb0 and Alml6f [99]. A similar approach has also been

investigated by Head-Gordon et al. [100].

J. The influence of supercomputers on quantum chemistry.

It is important to conclude this presentation of supercomputer imple-

mentations with a discussion on how these algorithms and machines have influ-

enced our approach to quantum chemistry. While it might be thought that per-

formance gains of an order of magnitude or more would simply increase the size

of systems considered, their influence is much more profound. For example, the

ability to perform full CI calculations in realistic basis sets has provided us with

detailed benchmarks for other correlation methods [67,68]. These have shown

that multireference CI wave functions (with some correction for size-consistency

effects if eight or more electrons are correlated) reproduce the full CI results to

very high accuracy. Since MRCI wave functions are thus an adequate solution to

the correlation problem, we may infer that (assuming relativistic effects or Born-
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Oppenheimerbreakdown terms are negligible) any discrepanciesbetweenMRCI

results and experimental observationsare due to inadequaciesin the atomic or-
bital basis. While this had beenhypothesizedon a number of occasions[101-103],

full CI calculations (being more practical than the useof a completeorbital ba-

sis) were required to confirm it. It then becomesworthwhile exploring the pos-
sibility of using better basissets together with MRCI wavefunctions, and su-

percomputersprovide the necessarycomputational resourcesto allow the useof

atomic natural orbital basis sets [51],which haveled to almost chemicalaccuracy

(1 keal/mol) for systemssuch asN2 [104], and to evenhigher accuracyfor CH2

and Sill2 [105].
Another way in which the power of supercomputersinfluencesquantum

chemistry is the speedwith which results canbe obtained. Even if results of a de-
sired accuracy can be obtained on, say,a VAX-type minicomputer, the real time

required to obtain the results may be too long for the calculation to be useful.
It is an important consequenceof using a supercomputerthat results can be ob-

tained in relatively short times, and this factor will doubtless increasein impor-

tance assupercomputer performance increases.
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V. Dynamics

A. General observations

While much of the effort in computational quantum chemistry goes into

implementing a few, rather well explored methods, this is much less true in scat-

tering calculations. It is generally necessary to consider a wider range of possi-

ble methods and their various implementations, and the optimum course is often

much more application dependent. We shall review here a greater variety of dif-

ferent methodologies than was the case for quantum chemistry, but there is still

no intention to review the entire field; we concentrate on approaches that we have

explored and used.

B. Classical dynamics

The simulation of collisions by the quasi-classical trajectory method can

be broken down into three steps: the specification of the initial conditions for the

trajectories, the integration of the equations of motion to determine the final con-

ditions, and the analysis of the the final conditions to extract rate data [4,5]. The

initial coordinates and momenta are determined from quantities which fall into

two categories, namely those which are fixed, like the total energy or initial quan-

tum state, and quantities such as orientations, which are not experimentally re-

solved. The unresolved quantities must be averaged over, and this necessitates

the determination of many different trajectories.

Computationally, the most expensive step is the integration of the trajec-

tories. It is therefore advantageous to consider the savings possible by vectorizing

this step. The problem is to determine the coordinates qi and their conjugate mo-

menta pi at some time after the collision, given values before the collision. These

are determined by solving Hamilton's equations:

dpi/dt = -OH/Oqi, (V.1)

and

dqi/dt = OH/Opi. (V.2)

Here H is the Hamiltonian and i runs from 1 to the number of degrees of freedom

in the system. Thus once the center of mass motion is removed, Hamilton's equa-

tions comprise a set of 6N - 6 coupled first-order differential equations, where N
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is the number of atoms. In the absence of external fields, the derivatives of the

Hamiltonian become cOH/Oqi = cOV/Oqi and OH/Opi = cOT/Opi, where V is the

potential energy of the system and T is the kinetic energy.

Many different algorithms have been used to solve Hamilton's equations,

however in most methods the time-consuming steps consist of forming the quanti-

ties 3_, the vector of time derivatives of the Pi and qi at intermediate step j, and

then using them to predict new coordinates and momenta. For later convenience

let _',, be the vector of Pi and qi at time step n. The operations for predicting

new coordinates and momenta are typically SAXPY-like operations which can be

evaluated reasonably efficiently, as demonstrated in previous sections, provided

the vector lengths are great enough. If a single trajectory is being integrated,

then the vector lengths would be 6N - 6, or 12 for A+BC collisions and 18 for

AB + CD collisions. These lengths are insufficient to give execution rates which

approach the ultimate capabilities of vector pipelined machines. Further, the vec-

tor lengths involved in the calculation of the gradients of the potential which con-

tributes to )_ will be even less. Vectorizing a. single trajectory is thus not a very

efficient use of Cray computers.

It is fortunate that it is possible to do much better by taking advantage

of the fact that many trajectories are required. Because the integration of each

trajectory is independent of all others, several can be processed simultaneously.

That is, new vectors Yn and _#j can be constructed by simply concatenating the

vectors _'n and j_ from different trajectories; these new longer vectors can then be

used in the predictions of new coordinates and momenta. The vector lengths in

these steps can thus be made equal to (6N - 6)Ntraj, where Ntraj is the number

of trajectories integrated simultaneously. This means that with little difficulty the

asymptotic rates can be reached for the operations that are performed. However,

the integration is not the entire calculation, and several other steps need to be

considered before predictions of overall execution rate can be made.

We note first that although the integration of each trajectory is indepen-

dent of the others, the initial conditions are not. This is because the random sam-

pling used to generate the initial conditions relies on pseudo-random number gen-

erators which require knowledge of one or more previous pseudo-random numbers

in order to generate the next in the sequence. Thus in general this initialization

part of the calculation must be performed in scalar mode. Fortunately, it is of
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sufficiently small sizethat the scalar operations do not contribute significantly to
the overall run time.

An additional possiblecomplication is that if variable step sizealgo-

rithms areused to integrate Hamilton's equations, then operations which are
more dependenton the specific trajectory are required to predict the coordinates

and momenta. This would disrupt the vector processingdiscussedabove. Con-

sequently it is necessaryeither to usea fixed step sizealgorithm, or to modify

existing variable step sizemethods to treat the different trajectories in a more

uniform manner. The optimum solution will be problem dependent, and in many
casesthe simplicity of a fixed step sizealgorithm will out-weigh the advantagesof

a variable step sizealgorithm.

The final aspect to consider is the evaluation of the time derivatives _,

that is, the right hand sidesof (V.1) a.nd(V.2). For systemsfor which cartesian

coordinates are used as the qi, the derivatives of T are simply mass factors times

the Pi and thus are relatively trivial to form compared with the other parts of the

calculation. Thus the calculation of dpi/dt and dqi/dt, given values of pi and qi

is mainly spent evaluating the quantities OV/Oqi. This evaluation can be further

broken down into two steps. First of all, it is unlikely that the potential function

will be known explicitly in terms of the integration coordinates qi: typically the

interatomic distances might be used to express the potential but Cartesian coor-

dinates for the qi. Thus it is necessary to first compute the gradients with respect

to some set of internal coordinates Qn, and then to use the chain rule to obtain

the final derivatives. Usually the manipulations required for the chain-rule calcu-

lations are straightforward and inexpensive compared to the last remaining step,

the evaluation of the gradient of the potential. For systems in which a realistic

potential is used, this step will usually dominate all other steps. This is simply

a manifestation of the complexity of a typical expression for the gradients of the

potential compared to the expressions for the integration algorithms.

For relatively simple potentials, it can be advantageous to optimize the

various operations taken by the integrator more carefully -- see Ref. 106 for an

example of how this can be done.

The operations required to generate the gradient of the potential depend

on the representation of the potential: typically, mathematical functions like ex-

ponential and square root, and various trigonometric functions are required, as
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well as the usual arithmetic operations. In addition, functions requiring table

lookups, such as splines, are sometimes utilized, thus special effort is required to

produce an efficient code. However, in contrast to procedures which rely heav-

ily on matrix multiplication, the maximum execution rate which is ultimately

achievable is usually well below the theoretical hardware limits. This arises for

two reasons. First, the expressions for the gradients often contain common fac-

tors which are the result of single operations: these cannot be chained with other

operations and such steps will produce a maximum of a single result per clock pe-

riod. Second, the possibilities for minimizing memory traffic by unrolling loops or

by using several vectors (which remain in the vector registers) for more than one

operation are limited. This is again clue to the complexity of the expressions for

the gradients and the many different vectors involved. Thus while all of the time-

consuming steps for classical dynamics calculations can be vectorized, the vector

speedups obtainable are limited because of the relatively inefficient mapping to

the hardware.

Perhaps the best way to improve the performance of the construction of

the gradients of the potential is simply to minimize the number of evaluations re-

quired that is, to use an efficient variable step size integrator. However, this can

cause inefficiencies elsewhere, because of vectorization difficulties, and the various

parts of the calculation must be judiciously balanced for overall efficiency. One

example where the extra work involved in a variable step size algorithm paid off

was in calculations on the recombination of hydrogen atoms [107]. Here one H2

molecule will have an energy near or above the dissociation limit, and at certain

times this energy can be mostly kinetic energy, in which case small time steps will

be required, while at other times the energy will be mostly potential energy and

the slow velocities would allow larger time steps. Since most of the time will be

spent in regions of configuration space where the energy of the diatomic is mostly

potential energy, a variable step size algorithm can provide significant savings

over a fixed step size algorithm. The variable step size algorithm implemented for

this problem was a modification of the Bulirsch-Stoer method [108]. This method

has been shown to be an efficient choice for the scalar integration of trajectories

[4], and has the additional advantage that minor modifications allow the vector-

ization of most of the operations involved in the integration. We only outline the

ideas here: full details are given in Ref. 107. The basic philosophy of the method
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is that to propagate the solution over sometime increment, a seriesof integra-

tions using a low-order method and smaller and smaller step sizesis performed.
The results of each individual integration will not necessarily be very accurate,

but accurate results can be obtained by extrapolating the results of the different

step sizes. Based on the number of integrations required to obtain an accurate

extrapolation, the time increment to be used next is predicted, that is, the step

size is adjusted. In typical scalar implementations of this method, the number of

low-order integrations per time increment is increased until the extrapolation con-

verges within some tolerance. However, a similar scheme would not be very fea-

sible for the integration of several trajectories simultaneously. Thus the method

was modified to perform a fixed number of low-order integrations per time incre-

ment. Then, based on the errors in the extrapolations using the different num-

bers of integrations, the results for that time increment are either discarded and

the time increment for that trajectory decreased, or the results are saved and the

time increment adjusted to reach some error goal. Thus the scalar operations for

the variable step size part of the code consist only of error checking, saving or dis-

carding the results and adjusting the time increment. These steps amount to such

a small fraction of the overall process that this algorithm performs very efficiently

on the Cray machines.

As an illustration of the discussion above, we offer the times given in

Table 11. Here we show timings using the variable step size Bulirsch-Stoer inte-

grator for two systems. The first system is F + H2 using the simple Muckerman

No. 5 LEPS potential [109]. This system was chosen to give an idea of the limit

of a three-body system with a simple potential. The second system is H2 + H2

using the accurate potential from Ref. 107 which is based on extensive ab initio

electronic structure calculations, and represents the extreme case of a complicated

potential for a system with many degrees of freedom. Both calculations use in-

teratomic distances as the internal coordinates Q, with respect to which the po-

tential gradients are directly calculated, and Cartesian coordinates having the

center of mass stationary at the origin as integration coordinates [107]. The times

are normalized so that the integration time is 1 unit on the X-MP/48, and the

MFLOPS rates are determined from the hardware performance monitor on the

X-MP/48 and by scaling by the appropriate times for the other machines. The

number of simultaneously integrated trajectories (NtTaj) was 500.
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First, consider the F + H2 system. Even when using the very simple po-

tential employed here, a considerable fraction of the total time is spent evaluating

the gradients of the potential with respect to the integration coordinates. The

amount of time spent in the integration routine amounts to only 36% to 51%, de-

pending on the machine. Thus in spite of the modest execution rate of the vari-

able step size part of the code, a reasonable overall rate is achieved. Of the time

spent getting the gradients, about 20-27% is spent calculating the interatomic

distances and transforming the gradients to the integration coordinates. Consider

now the H2 + H2 system. Here the complexity of the potential is obvious -- 94_

of the time is spent evaluating the gradients of the potential with respect to the

internal coordinates in spite of the fast execution rates of 100 - 190 MFLOPS.

Here since only 3% of the time is spent in the integrator, considerable flexibil-

ity is available in optimizing the variable step part of the code by introducing

more scalar operations, without significantly degrading performance. The rela-

tive CPU time per integration step is about a factor of 20 greater for H2 + H2

than for F + H2.

The overall execution rates for either of the two potentials on the vari-

ous machines range from 100 to 190 MFLOPS, with the Y-MP at the top of this

range and all the other machines clustered at the bottom. These rates are well

below the theoretical hardware limits, which is probably a reflection of the limited

optimization ability of current compilers when faced with the complicated expres-

sions present in these codes.

At this juncture, we discuss other resources required by the classical dy-

namics calculations, namely disk and memory. As a rule, the variables required

for the various operations required to propagate a trajectory are of sufficiently

small number that they all can be held in memory, thus very few I/O operations

are required during the integration of a trajectory. An exception to this is if the

coordinates and momenta along the trajectories are desired for analysis purposes,

such as plotting. Then it will be necessary to perform a certain amount of I/O

in order to save these quantities for later use. However, the majority of trajecto-

ries will not be so analyzed, and thus it is only necessary to save the initial and

final conditions. The memory allocated by our program has not been minimized,

mainly because we have not encountered problems obtaining the space desired.

Much of the space is taken up by temporary vectors, which a more sophisticated
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compiler could allocate dynamically, thus reducing the overall spacerequirements.
The present code usedfor I-I2+ H2 requires720 x Ntraj words for the integration

part of the code and 589 x Ntrc, j words for the potential gradient part of the code.

Thus when using Nt,-aj = 500, which is our usual production value, the code re-

quires less than one million words of memory.

This section will be closed with some ideas on how the timings for trajec-

tories could be improved. Since most of the time is spent on evaluating the gra-

dients of the potential, we will concentrate on this aspect of the problem. With

the recent availability of ab initio gradient methods, it would seem advantageous

to directly fit the gradients of the potential. Then one would be evaluating dif-

ferent functions for the various gradients rather than differentiating a single func-

tion. Although this procedure has many conceptual merits, it has several possible

problems that limit its usefulness. First of all, the fitted gradients will probably

not all integrate to the same function, that is, the potential will be nonconserva-

tire [110] and so the trajectories will not conserve energy. However, in practice

this may not be a significant problem. Another problem is that often both the

potential and the gradients are required. For instance, it is often desirable to cal-

ibrate classical methods by comparing to quantum mechanical solutions of the

problem, and quantum mechanical dynamics methods require the potential it-

self rather than the gradients. In addition, hybrid dynamical methods exist [111]

which treat some degrees of freedom using classical mechanics and some using

quantum mechanics. Another facet of this reflects the large amount of labour

usually involved in constructing a fit to the potential: it not uncommon for sev-

eral different studies using different methods to be performed using a potential

once it has been fitted. It is thus less restrictive if the potential is given rather

than the gradients. Finally it may simply not be as efficient to evaluate separate

fits to the gradients as it is to explicitly differentiate a function. This is because

there may be many common expressions in the differentiation formulas. For ex-

ample, if we make the assumption that the gradients will be fitted by a function

of similar complexity as the potential, then a comparison of the number of gradi-

ents times the time to evaluate the potential to the time to evaluate the poten-

tim gradients will give some idea of the efficiency of the method. For the simple

F + I-I2 potential used in the timings above, the time to generate the potential

and three gradients is only 1.3 times as long as just generating the potential, and
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for the H2 + H2 potential of Ref. 107, the time to generate the potential and six

gradients is only 2.3 times the time for just generating the potential alone. Thus

for these cases, it is more efficient to deal with the potential and then explicitly

differentiate it.

B. Quantum dynamics

In the differential equation approach to quantum mechanical dynam-

ics calculations of nonreactive molecular collisions, the equations to be solved

are [112]
d 2

_-7r2f(r) - D(r)f(r) = 0, (V.3)

where r is the distance between the centers of mass of the target and projectile,

the f are the unknown radial functions and D is the coupling matrix. The matrix

elements of the coupling matrix are given by

2#
Dnn, = -_- < nlV_"tl _' > +5._,[-k_. + &(& + 1)/r2], (V.4)

where <  lVin ln' > is the matrix element of the interaction potential between

the basis functions labeled by the indices n and n', # is the reduced mass for the

collision partners, k2n is the square of the wave vector for channel n:

= 2 (E - (v.5)

E is the total energy, en is the internal energy for channel n, and l_ is the orbital

angular momentum quantum number for relative translational motion for channel

n. The basis functions labeled by n describe all degrees of freedom except r and

each value of n defines what is known as a channel. The interaction potential is

defined as that part of the potential which goes to zero as r goes to infinity, thus

it does not include the binding potential of the collision fragments.

The boundary conditions for the unknown functions are

fnn' (0)=0, (V.6a)

and as r goes to oe,

{ (2ikn)-'} {5_,_, exp[-i(knr -/_)]- Snn, exp[i(knr -/_2)]},fn ' ~ i(21knl)-- {5_,exp[Ik_lr]- S_,exp[-lk_lr]},

> 0;
<0.
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From the matrix elements of the scattering matrix, S,,_,,, experimental observ-

ables can be calculated using standard formulas [113-115].

To determine the scattering matrix, we convert the problem of determin-

ing the f from a boundary value problem to an initial value problem by determin-

ing a linearly independent set of solutions of (V.3), called t" which are regular at

the origin but have arbitrary slopes there [116]. In practice it is not usually neces-

sary to start at the origin but rather at any larger distance where the hard core of

the potential is sufficiently repulsive so that the radial wave functions are negligi-

bly different from zero. At large r these functions behave as

- {P,,,vsin(knr-l,_)+Qnn, cos(k,_r-l,,_), k_ >0;fnn' "_ Pnn' exp[lknlr] + _),.n' exp[-Iknlr], k_ < 0,
(v.7)

with P, P, Q, and (_ determined from f a.t two points or the logarithmic deriva-

tive at one point. From P and Q, the scattering matrix can be easily determined.

The number of algorithms for solving the close-coupling equations (V.3)

is quite large [117-121], and the optimum algorithm is case dependent. The num-

ber of coupled equations, the dimension of D in (V.3), will be called N and can

range from 1 for central potential problems to over a thousand for anisotropic

AB + CD collisions [122], thus the vectorization strategies will depend on the size

of the problem. In contrast to problems in classical mechanics, the integration of

(V.3) for a single channel (N = 1) can be vectorized relatively effectively. This is

because the interaction potential depends only on the parameter r, which can be

made to take on known values while in classical problems the potential depends

on the unknown functions which are being determined. Thus the steps required

for integrating the close-coupling equations for a single channel typically would be

to determine Dll(r), to determine temporary quantities depending on Dll(r) for

single values of r, and finally to recursively assemble the solution. The first two

steps are completely vectorizable, with vector components corresponding to dif-

ferent values of r, while the final step is not; however, if properly coded this final

step will not involve many operations per r value and hence will not be the rate-

determining step. For example, in Ref. 123, scattering calculations were carried

out at complex energy searching for poles in the scattering matrix. This required

calculations at many different energies. The algorithm used was a modification of

the _R-matrix propagation algorithm [124-126] where the equations defining the
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modified method are

._1) : 0, (V.S)

f_(i) = t(i) /([_(i-1) jr q(i)), (V.9)

fll/(dfll/dr]r=riThl/2) = _f-_i) + r_i), (V.lO)

t(')= _[p(,)]-2, (v11)

_(i--1) (V.].2)q(i) = r[i) ___ tl ,

](,)(,)-1, (v.la)

p}i) = cosh(A(i)h(i)), (V.14)

p(i) = A(/) sinh(A(i)h(i)), (V.15)

and

_( i)2 = Dll(ri). (V.16)

In the above equations, h (i) is the width of sector i and ri is the center of sector

i. Equations (V.8) and (V.10) need be evaluated only once per calculation, Eq.

(V.9) is the recursive step and the other equations are vectorizable with vector

lengths equal to the number of sectors, which is typically on the order of hun-

dreds. Thus significant vector speedups are obtainable. It should be noted that

as in the case of classical dynamics, the vectorized steps here do not map as well

to the Cray architecture as operations such as matrix multiplication do, so that

extremely high execution rates are not possible.

For calculations with large N, it will be more efficient to vectorize the

operations required for the individual integration steps. The majority of the time

will be spent on standard matrix manipulations on matrices of order N by N.

For large N, these operations will dominate the calculation because they scale as

N a. Since (depending on the algorithm) various numbers of matrix multiplica-

tions, matrix inversions, linear equation solutions, and matrix diagonalizations

will be required per integration step, the choice of a particular algorithm will be

based on the relative work of the various operations, that is, the coefficient mul-

tiplying N a, and also on the execution rate of the operations, which introduces

another coefficient multiplying the operation count. We now consider these last

points in detail.
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In Table 12, we quote estimates of the asymptotic execution rates and

matrix order required to achieve half the asymptotic rate for several matrix op-

erations. The operation count for large enough N will scale as C_N 3, with Cx

a coefficient depending on the operation. For matrix multiplication we take

CMXM = 2, for general linear equation solution we use CaLS = 8/3 (2N3/3 for

LU decomposition, and 2N 2 per right hand side for forward elimination and back

substitution), for symmetric linear equations we use half this value: CSLS = 4/3.

Finally for real symmetric matrix diagonalization, we estimate CRs = 10. These

operation counts are based on the discussions of Ref. 127. The data in the table

were determined by averaging the results obtained by fitting the CPU times and

MFLOPS rates with matrices of order 63, 127, 255 and 511 to N2(t8 + Nt_) or

lO-6Cx/(too + ts/N) by least squares. These particular orders where chosen to

be close to multiples of 64 to make most eKicient use of a Cray computer's 64-

element vector registers while at the same time avoiding multiples of 2, which can

cause catastrophic bank conflicts as discussed in Section III above. For example,

the execution rate for 512 is a factor of 20 less than for 511 on the CRAY-2 when

using the general linear equation routine LUSOLV. We should also point out that

by fitting only these above array dimensions we obtain different rtl/2 values from

those in section III above. In particular, the fit includes only array dimensions

considerably larger than the true nl/2 values for matrix multiplication. The fitted

nl/2results for this case are too small and should not be taken literally.

For matrix multiplication, we give results for the Cray routine MXM. For

diagonalization, we only quote results for the EISPACK [57] routine RS, which we

have found most convenient and reliable for our scattering calculations, although

other routines may be more eKicient [128]. In the following comparison we will

emphasize asymptotic execution rates (too), but for finite matrices the nl/2 values

are also important parameters.

For linear equations, we give results for four different routines. The

first, called LUSOLV, is a FORTRAN code utilizing loops unrolled to a depth

of 16 [14,129,130]. The next is the Cray library routine MINV [22]. The last two

are LINPACK [131] routines, one for a general matrix and one for symmetric ma-

trices. Comparing the four methods for linear equation solution, we see that it is

never advantageous from a CPU time point of view to use the specialized sym-

metric matrix routine, for its execution rate is always much more than a factor of
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two less than the other routines. While it uses less memory, since only a triangle

of the matrix needs be stored, the execution rates are so poor that this is unlikely

to be of sufficient motivation to use it. On the X-MP/48, the execution rates of

the general LINPACK routine and the library routine MINV are similar, but the

LUSOLV program is about a factor of two more efficient then those routines. On

the Y-MP the situation is similar, with the LUSOLV program being the fastest,

followed by the general LINPACK routine, and then MINV, with relative ratios

1:1.2:2.5. On either CRAY-2 machine the situation changes, and the Cray library

routine MINV is almost a factor of two faster then LUSOLV, and more than a

factor of 2.5 times faster then the general LINPACK routine. Thus the most ef-

ficient routine to use on the X-MP or the Y-MP is the FORTRAN program LU-

SOLV, whereas on the CRAY-2 the most efficient routine is the CRI's MINV.

The relative efficiencies of the various operations can be estimated by

comparing the roo values (see also Section III). Since matrix multiplication is usu-

ally the most efficient operation, it is convenient to introduce the ratios T_/ts and

T_LE which measure the asymptotic rates compared to matrix multiplication for

diagonalization and the best method for linear equation solution. On the X-MP

and Y-MP we have 7¢RS = 1.2 and T¢LE = 1, while on the CRAY-2 these ra-

tios are 2.6 and 0.91-1.0, depending on the memory speed. On the X-MP and

Y-MP, therefore, these various matrix operations are approximately equally ef-

ficient, while on the CRAY-2 the diagonalization code is much less efficient then

the others. However on all Cray machines, the nl/2 values are much shorter for

matrix multiplication than for the other operations, so for small to moderate ma-

trices, the diagonalization and linear equation solution operations will be rela-

tively less efficient then the above discussion indicates. We should again point out

that these timings (especially CRAY-2 values) are subject to about 10% fluctua-

tion, depending on system loads.

Based on the timings reported above, it seems desirable to maximize the

number of matrix multiplications and minimize the other operations in the overall

scheme. One algorithm which does this, at least in principle, is the DeVogelaere

method [132], which only requires matrix multiplications. However in practice,

two aspects diminish the attractiveness of this method. First of all, the r step

size is limited by the oscillation of the wave flmctions, that is, a certain number

of integration steps will be required per De Broglie wavelength. Thus for long-
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rangepotentials or high energy collisions, an extremely large number of integra-
tion stepswill be required. In contrast, a number of algorithms exist wherethe

integration step sizeis controlled by the changein the interaction potential and
thus large stepscan be taken where the potential is slowly varying. The step sizes

required for accurate results for thesemethods are only wealdy dependenton to-

tal energy also.

The seconddifficulty with the DeVogelaeremethod is one common to all
initial value methods that explicitly determine the radial functions f. At small r,

all channelswill be classically inaccessible,and thus the functions will be grow-

ing exponentially. If the classicallyforbidden region is too large, then the compo-
nent of the functions which has the largest exponential growth will becomesuf-

ficiently larger than all other componentsthat (to working precision) the linear

independenceof the initial conditions will be lost. The determination of the scat-

tering matrix will then not be possible [132]. This can be controlled to a certain

extent by periodically reorthogonalizing the columnsof f [133],but this stabiliza-

tion procedure introduces extra operations and a small integration step may be

required to limit the exponential growth per step. In practice, for molecular col-
lisions where it is necessaryto include channelswhich areclassically inaccessible

for all r, this difficulty can be a severe problem.

An alternative solution is to devise an algorithm which does not explic-

itly determine the f but rather some other quantity which will be inherently sta-

ble. For example, the logarithmic derivative matrix f-idf/dr will not suffer from

stability problems.

Because of these numerical difficulties, we have found the _R-matrix

propagation algorithm to be very attractive [124-126]. In this method, the in-

tegration step size is usually limited by the r derivative of the coupling matrix

D, so large step sizes are possible in the asymptotic region where the interaction

potential is slowly varying, which is particularly advantageous for long-range po-

tentials. In addition, the negative of the inverse of the logarithmic derivative ma-

trix is propagated, which avoids all stability problems. A final advantage is that a

large fraction of the work required is independent of total energy B so that effort

can be saved by performing calculations for several energies. A disadvantage is

that operations other than matrix multiplications are required.

The operations involved per integration step for this algorithm are as
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follows. The energy independent stepsare to construct the coupling matrix D

(which is real and symmetric) in sector i, to diagonalize it to determine the local

adiabatic eigenvectors T i and eigenvalues [_(i)]2, and then to form the overlap

matrix

2r(i- 1,i)= [T(i-1)]tT (i). (V.17)

For calculations at subsequent energies, it is only necessary to save the local adia-

batic eigenvalues and overlap matrices. Thus for large N, the relative time for the

energy independent step will be Na(2 + 107_RS). Since the total energy enters in

Eq. (V.4) only as a multiple of the unit matrix, the local adiabatic eigenvectors

are independent of E and the eigenvalues are shifted by a constant amount if E

changes. Then at each energy it is necessary to form

R(i) = r(i)_ [p_i)] -1 {R_i-1)T(i-l,i)+f(i-l,i)r(i)}-iT(i-l,i)[p_i)] -1, (V.18)

where

and

R_ i) = -f[df/dr] -11_=_,+h,/2, (V.19)

r_ i) =LrP(i)I-1P(i)3J 1, (V.20)

[P_i)lnn' = _nn' cosh(/_(n/) hi), (V.21)

[P_i)lnn, = 5nn' _ (/) sinh(/_(n/) hi). (V.22)

Since P_i), P_i) and r (i) are diagonal, the time-consuming operations required for

(V.18) are one matrix multiplication and one linear equation solution, and so we

see that the relative time for the energy dependent step is N3(2 + 8/37_LE). If

we consider large scale calculations on the CRAY-2, where we take T_RS as 2.6

and T_LU as one, then we see that the ratio of the energy independent time to

the energy dependent time is six, thus it is advantageous to perform calculations

at many energies -- performing calculations at seven energies would require only

about twice as much CPU time as one energy. (Note that an earlier version of our

code [130, 134] used a different sequence of matrix operations which was less effi-

cient both in time and memory usage.) This assumes that the time for the evalu-

ation of the matrix elements of the interaction potential required for (V.4) is neg-

ligible. This is not always the case, even though the work to construct this matrix

should scale as N 2 for large enough N. If the interaction potential time is not
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negligible, then the ratio of the energy dependent times to the energy indepen-
dent times will be evengreater. Strategiesfor optimizing the interaction potential
matrix evaluation will be discussedbelow.

The storage requirementsfor the R-matrix propagation algorithm are

relatively small, considering the amount of memory available on the CRAY-2.

The matrices which need to be stored are of order N x N, and the number re-

quired is not large. For a single energy calculation, our present code requires

seven matrices of this size, excluding the data required to form the interaction po-

tential matrix. Usually we keep these matrices in memory, but some calculations

carried out on a CRAY-1 used a version of the code which kept only two matrices

in core and the remainder on disk. For the values of N we used in those calcula-

tions (440 and 530), the I/O requirements of this strategy did not significantly de-

grade the performance of the method. This would be especially true on a machine

with a large SSD. Other quantities which need to be stored are those required to

evaluate the potential coupling matrix. The requirements here may or may not

be considerable, depending on the potential used. In our large scale HF + HF

calculations, using a complicated potential, our code required approximately an

additional 40N 2 words of storage for angular integrals and pointers (see below for

a description of the construction of the potential matrix). Fortunately, this data

is accessed sequentially, thus comparatively little is lost by storing it on secondary

storage like disk or an SSD.

If more than one energy is to be used, there are two storage choices. The

first choice is to finish the calculation at the first energy before performing any

part of the calculation for other energies. This requires that an additional Nstep

matrices be saved (the sector overlap matrices), where Ns,ep is the number of in-

tegration sectors used. The second choice is to perform the calculations for all

energies at sector i before going on to the next sector. This requires 8 + NE ma-

trices, where NE is the number of energies used [134]. Thus since Ns,_p is usually

on the order of hundreds and NE on the order of tens, it is usually more efficient

to make the second choice.

We now turn to the question of evaluating the interaction potential ma-

trix. It is usually most efficient to transform to the body-fixed frame of reference

to evaluate the interaction potential matrix. In this frame the kinetic energy part

of D is no longer diagonal, but the coupling is very simple [135]. It is necessary
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to back-transform to the laboratory frame only when the asymptotic analysis to

determine the scattering matrix is carried out. For A + BC collisions we need to

compute the body-frame matrix elements

/ •" , , int
< vjaJMPIY n lv'j'aJMP dR dcosx Yja(x,O)Ov (R)V (r,R,X)

x 0)Ov,j,(R)
(v.23)

where v and v I are vibrational quantum numbers, j and j' the diatomic rotational

angular momentum quantum numbers, J the total angular momentum, M is the

projection of J on the laboratory-frame z axis, f/the projection of j, j' and J

on the body-frame z axis, P is the parity, R is the diatomic bond length, r the

distance between A and the center of mass of BC, X the angle between the vec-

tors from A to the center of mass of BC and C to the center of mass of BC, Yja

is a spherical harmonic, and Ovj is a vibrational function. To arrive at (V.23) we

have averaged over the Euler angles rotating an arbitrary laboratory-fixed coor-

dinate system to the body fixed coordinate system: this produces a Kronecker

delta for f_, J, M, and P, and the factor 27r. The traditional way to proceed is

to expand the cos X dependence of the interaction potential in terms of Legendre

polynomials and then perform the angular integrals analytically. The R integral

is then performed most efficiently using a optimized quadrature [136] so that the

matrix elements become

< vj_2YMPlVintlv'j'ftJMP >= _ wvjv,j,,, v_,(r, a
i,A

(V.24)

where Wvjv,j,,i is a vibrational quadrat_lre weight, v_ is a potential expansion co-

efficient, and f_j, is an angular integral (which is independent of M, J, and P).

In general, it will also be necessary to generate the potential expansion coeffi-

cients, and this is most straightforwardly done by projection:

+ 1 f dcosx P (cos R,x). (v.25)v,x-- 2

The quadrature approximation to (V.25) is most efficiently evaluated as a matrix-

vector product. Usually if the potential is given explicitly in terms of a Legendre

expansion there are only a few terms in the A sum, however, if it is necessary to

converge the angular expansion of a more general potential several tens of terms
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are typically required. The difficulty of efficiently evaluating (V.24) arisesfor two

reasons.First, the angular integrals are zerounlessthe triangle rule for j, j_, and

A is satisfied, thus many integrals are zero and it is advantageous to exploit that.

Second, the way in which two pieces of information depending only on a subset of

the quantum numbers are combined together complicates efficient evaluation.

We now consider three schemes to evaluate (V.23). In scheme A we eval-

uate (V.25) by matrix-vector product and then form

_)vjv'j' /X(r) = _ Wvjv'j',i vA(r, Ri).

i

This is performed as a matrix multiplication with vjv_j _ labeling rows and A

columns of the result. The inner index i is the number of points in the vibra-

tional quadratures and usually is on the order of ten. Finally a sparse SAXPY

is performed for each value of A to generate the matrix element. In scheme B the

procedures of A are modified by forming the intermediate product

(v.26)

= ni)f)j, ,

which is a sparse SAXPY followed by

(V.27)

7t
< vj_JmP]Vinttv'J'_JMP >= E Wvjv,j,,i Ajj,(r, Ri), (V.28)

i

which is a vector plus vector times vector using scattered data. Finally in

scheme C we dispense with the expansion of the potential and directly t form the

f_
Ajj,(r, Ri) via

f_
A j j, = _ ,a ~f_ (v.29)

n

where

and

Cnj~_ : C_nvint(T, Ri, cOS Xn), (v.30)

tS_ a Gauss-Legendre quadrature weight. Equation (V.29) is evaluated as a ma-

trix multiplication. The number of points in the angular quadrature is on the or-

der of ten.

t We are grateful to J. N. Murrell for suggesting this option.
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The three schemes have various advantages and disadvantages. A draw-

back of schemes A and B is that is it necessary to form the angular integrals

whileinschemeCit isnecessarytoformtheCyn,whichisaneasiertask
and can be done efficiently in vector mode. However, these steps are indepen-

dent of r and/_ and so should not be of significant overall cost. In Scheme A

the vibrational integral is computed very efficiently, but too much work is per-

formed: many of the _)vjv'j',,X will not be required since many of the f_j,A are

zero. Schemes B and C perform no more work than is required for the vibra-

tional integrals, but (due to the scattering of data because a given vjv'j' pair

contributes to more than one f_) this work will not be performed as efficiently in

scheme A.

Turning now to the angular part of the different methods, scheme A only

performs the sparse SAXPYs once per _, while scheme B performs them once per

per vibrational quadrature point. Scheme C also needs to repeat the angular

integrals for each vibrational quadrature point. However, if there were only one

vibration quadrature point, scheme A would perform more work because the to-

tal number of angular integrals (zero and nonzero) per/_ is proportional to the

square of the number of vj states, whereas for schemes B and C the number is

proportional to the square of the number of j states. Thus the relative efficiencies

of schemes A and B will depend on particular circumstances, with a larger num-

ber of v states coupled with a smaller number of vibrational quadrature points

favoring scheme B and a small number of v states using many vibrational quadra-

ture points favoring scheme A. In our experience, usually the efficiency perform-

ing the vibrational integrals is the most important factor, thus scheme A is more

efficient than scheme B. This is another example of how minimizing the operation

count does not necessarily lead to the most efficient algorithm on vector comput-

ers.

In most cases, scheme B will be preferred over scheme C because the ma-

trix multiplication to produce the angular integrals takes longer than the sparse

SAXPYs. However, in special cases scheme C also has one potentially important

advantage: it may be possible to greatly reduce the nmuber of vj states used in

the wave function expansion by using some sort of adiabatic rotational states

rather than spherical harmonics [137]. That is, a few new functions Yn_, which

are linear combinations of many of the _, could be defined and used instead.
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This may allow otherwise intractable problems to be solved. A single left trans-

formation of the Ca, ` is all that is required for scheme C, while the other schemes

require similarity transformations for each value of A to produce new angular in-

tegrals which now in general are not sparse, so the sparse SAXPYs are replaced

with full SAXPYs. This will increase both the memory and the operation count

for these schemes. The transformation times will be important because the trans-

formations depend on r and hence must be carried out many times.

Turning now to the case for AB + CD collisions, the matrix element to

be found is [138] < VlV2jlj2j12_JMP[Vint[v_ '" " "v23132312PtJMP >, where vi is the

vibrational quantum number of molecule i, j_ is the rotational quantum number

of molecule i, j12 is the quantum number of the vector sum of jl and j2, J is the

total angular momentum quantum number, M is its projection on the laboratory

frame z axis, f/is the projection of j12, J12, and J on the body fixed z axis, and P

is the parity. The procedure here is very similar to the A + BC case, except that

the manipulations are more complicated. Expanding the angular dependence of

the potential in terms of combinations of spherical harmonics now involves three

angles and three indices, thus the number of terms required is approximately the

cube of that required for the atom-diatom case [139]. For anisotropic potentials,

close to a thousand terms can be required to converge the angular representa-

tion of the potential [140]. Thus although one may be tempted to ignore the pres-

ence of zero angular integrals in the A + BC case to simplify vectorization, for

the AB + CD case the number of integrals is so large that it is imperative that

the zero integrals be identified and not stored. The aggregate number of angular

quadrature points can also be in the thousands. The situation for the vibrational

integrals is not quite as bad, because there are only two vibrational coordinates

and so the number of quadrature points will be only the square of the A + BC

case, say, 50 to 100 if optimized quadratures [136] are used. The three different

schemes described above for performing the integrals can be applied here with

little modification with the exception of scheme C which for f/greater than zero

must be modified to include contributions from two numerical integrals, that is,

two matrix multiplications are required, because of the more complicated coupling

of the angular momentum vectors. Thus Ca, ` of (V.31) is replaced with the quan-
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tity nxC)lAj12 n given by

wn2wn.] (jl lj2 21jlj2j12O)N      (-1) 
ml Yr_2

gj_lm21 j_ Xnl) j: (COSXn2)X[--2--( m2 -- ml)]

(v.32)

where x is either sin or cos, n is a composite index denoting the three quadra-

ture indices nl, n2 and ns, _,_ and _,_ the quadrature weights for the different

angular integrations, (...]...) is a Clebsch-Gordan coefficient, Njm the (positive)

normalization factor for the spherical harmonic ]Qm, pyre is an associated Leg-

endre function, X1 the center of mass BC to center of mass AB to B angle, X2

the inclination angle for the second molecule, and ¢ is the dihedral angle. If f/

is zero, then only the functions with x = cos are required. For _ greater than

zero, the two matrix multiplications are for cosine terms times cosine terms and

sine terms times sine terms. The weighting of the various schemes changes some-

what for this case because of the relative complexity of the analytic calculation

of the angular integrals required for schemes A and B. Although these integrals

are still independent of r, their calculation can be time-consuming enough that

they can consume a significant fraction of the computational resources required

for a scattering calculation. The analytic formulas involve 3-j, 6-j and 9-j sym-

bols which are generated mostly in scalar mode. In contrast, scheme C, which

only requires the functions of (V.32), involves only a Clebsch-Gordan coefficient

(which is a rephased and normalized 3-j symbol), thus the time to calculate the

functions for scheme C will be much less than time to form the angular integrals

required for the other two schemes. In addition, the efficient implementation of

adiabatic rotational states possible with scheme C makes it rather attractive.

An alternative scheme to reduce the operations required to evaluate the

D matrix is to employ some form of discrete variable representation [141]. Here

a transformation is made so that the potential coupling is diagonal with elements

equal to the potential at grid points. The kinetic energy is not diagonal in this

basis. So far this method has been applied only to rotational-like degrees of free-

dom for three atom systems. Another way to reduce the effort to evaluate the po-

tential matrix is to write the interaction potential in a special form whereby much

of the angular and vibrational integrations need be done only once [122].

We also reiterate that the potential can be reused for calculations at
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more than one energy,and if the body-frame matrix elementsareused as dis-
cussedabove,they can be usedfor more than one value of the total angular mo-

mentum J. Finally it may be possible to achieve speedups by evaluating the po-

tential matrix using a coarser grid then is used to integrate (V.3) and then inter-

polating the result. Thus if one is willing to perform extensive enough calcula-

tions (many energies, many Y), the evaluation of the potential matrix will be an

insignificant part of the overall calculation, and the overall execution rate is deter-

mined by the rate of the matrix manipulations in the algorithm used for solving

(v.3).
We now turn to some new algorithms and methods which have been

made viable by the availability of the large CRAY-2 memory. In contrast to the

quantum mechanical methods discussed so far, which propagate a solution along

r, and hence need only store the relevant data for one value of r, the methods

we mention now are more global in nature and require data for all values of r.

The first method we discuss is the finite difference boundary value method (FD-

BVM) [142,143]. Here the close-coupling equations are solved not by specifying

two sets of boundary conditions at small r, but rather by specifying a boundary

condition at both small and large r. This can be done in many ways, and the

easiest is to set up a grid of r consisting of the points rl, r2, ... rNgri_ and then

approximate the derivative operator in (V.3) by finite differences, for example

d 2 ~

dr--_f(ri) = E Cijf(rj). (V.33)
J

This converts the differential equation into a set of linear equations of the form

Af= if, (V.34)

with A a band matrix made up of the D(ri) and Cij, -f the vector made up of a

particular column of t', say column no, at each of the Ngrid distances, and ff con-

sists of values of column no of t" for distances less than rl and greater than rggr_d.

For r less than rl we set f to zero. For r greater than rNg,id, the boundary condi-

tions are more complex, because they require knowledge of the scattering matrix,

which is not available at this step of the calculation. Thus we are restricted to

finite difference approximations which require knowledge of the solution only at
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one distance beyond rNg,_,. Then an arbitrary normalization can be introduced

into (V.7) and we can take

Lno(rNg_,,+l) = 5-no. (V.35)

The bandwidth of A depends on the number of points in the finite difference ap-

proximation, and in our calculations we have found it efficient to use a 9-point ap-

proximation everywhere except for the large r end of the grid where the number

of points is reduced to seven and then eventually down to three in order that only

one point beyond the end of the grid is required for the boundary conditions. Of

course this necessitates using a smaller step size for the last grid points in order

that the error of the solution not be dominated by the error in the final 3-point

approximation [144]. With this scheme the half-bandwidth of A is equal to 4N,

where N is the number of channels included in the close-coupling equations.

There are several advantages of this method which offset to a certain de-

gree the extra storage resources required by it. Perhaps the most important fea-

ture is the high quality of radial functions produced. In contrast to initial value

methods which directly determine the radial flmctions, the FDBVM has no dif-

ficulties with instability due to classically forbidden regions. Thus if rather than

just requiring the scattering matrix, one is interested in using the radial functions

for other purposes, such as in integrals, then the FDBVM may be the method of

choice. An important factor in making this worthwhile is the fact that there is no

restriction on the grid points, that is, they can be unevenly spaced. We have used

this feature to advantage by including Gaussian quadrature points in the finite

difference grid and then used the resulting radial functions in numerical integrals

using efficient Gaussian quadrature rules [144]. Another feature of the method is

that it is very easy to solve inhomogeneous versions of (V.3), because the inho-

mogeneity will simply appear in/3. In addition, because the work to solve (V.34)

is primarily made up of forming the LU decomposition of A, then it is possible

to solve for several inhomogeneities for little extra cost once the homogeneous

problem has been solved [145]. The final advantage is that (V.34) can be solved

by reasonably efficient black box programs, so that good execution rates can be

obtained even for relatively small N, in contrast to the step by step methods dis-

cussed above. Another aspect of this is that most of the time will be spent solv-

ing one set of linear equations, so the user need not be concerned with optimizing

large amounts of code, but simply calling the library routine.
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We next turn to methods which are not based on (V.3) but rather on

equivalent integral equations. The number of methods here is very large [146-

148], but the basic ideas are similar. Rather than numerically obtaining the ra-

dial functions by integrating a differential equation, the radial functions (or re-

lated quantities) are expanded in terms of known basis functions, and then the

unknown coefficients are determined from the solution of a single set of linear

equations, or the scattering matrix and related quantities are determined directly

from matrix elements over the basis functions using linear algebra. Thus the work

in forming the scattering matrix can be broken down into two parts, the calcula-

tion of the matrix elements and the solution of the linear equations. If there are

an average of M basis functions per each of the N channels, then for large enough

M • N, the work for the matrix element calculation will scale as (M • N) 2 while

the work for the linear equations step will scale as (M • N) 3. Thus rather then

performing many matrix operations which scale as N 3, there is one large opera-

tion scaling as (M • N) 3, so the size of __43 compared to the number of integration

steps will be important in determining the relative efficiency of these methods

compared to the methods based on differential equations. However, these basis

function methods have several advantages which can counterbalance inefficiencies

and make them the methods of choice. A particular example is in the area of re-

arrangement collisions. The quantum mechanical equations of motion based on

the differential equation approach lead in this case to integro-differentiM equa-

tions [149], which are very difficult to solve. Although it is possible by a suitable

choice of coordinates to turn the rearrangement equations of motion into differ-

ential equations [150], new complexities arise [151,152]. In contrast, the appli-

cation of basis function methods leads only to exchange integrals which involve

all known functions, so the methodology is virtually unchanged [144]. Another

potential advantage is that the linear equations can be solved iteratively, so the

work per initial state will scale as m(M. N) 2, where m is the number of iterations

required [153-155]. This is an advantage when one is interested in transitions out

of only a few initial states, so only a few columns of the scattering matrix are

needed; however, all of the methods which we have discussed so far use arbitrary

boundary conditions and hence require the generation of N linearly independent

solutions in order to determine any column of the scattering matrix. Another

potential advantage is based on the way scattering calculations are usually per-
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formed. In order to assessthe convergenceof the calculations, it is necessaryto

perform a sequenceof calculations which differ in the number of basisfunctions
used,and thus many problemswhich arevery similar are solved. What we wish
to do is usesomeof the information from smaller, preliminary calculations, to

make the larger calculations lessexpensive.One way to do this is to form linear
combinations of the M basis functions based upon smaller calculations and use

a smaller number of these contracted functions in the linear equation step [156].

Even if the number of basis functions per channel can be reduced only slightly,

the cubic operation count will magnify this reduction and make it a worthwhile

step. The parallels here with improving the basis functions in electronic structure

calculations (such as the use of atomic natural orbitals) are striking.

These basis function methods are still quite new for applications to heavy

particle collisions, and are undergoing rapid development. One important area

which needs further work is the efficient evaluation of the matrix elements. While

the scaling arguments presented above show that this will be a negligible step for

large enough calculations, experience to date is that the coefficient multiplying

the (M • N) 2 factor is large enough so that it can dominate the calculation. How-

ever, the best implementation here is probably yet to appear.

All of this discussion relies on the assumption that the resources for the

calculations exist, and this means primarily memory. If a calculation based on the

differential equation approach, which only requires the storage of matrices of or-

der N 2, taxes the memory of a machine, clearly the basis function approach is not

practical. For this reason, almost all converged calculations of three-dimensional

heavy particle collisions have been performed on the CRAY-2.

We now turn to the final method to be considered. Here we move from

the time-independent Schrgdinger equation to the time-dependent form. This in-

troduces many new complexities into the calculations, but at the same time sev-

eral advantages appear. The basic idea is that the time-dependent Schrgdinger

equation is first order in time, so the initial conditions determine the solution for

all other times [157]. This in turn requires that the calculations are for a partic-

ular initial quantum state, in contrast to most of the methods discussed above.

The initial condition consists of a mixed basis function/grid representation of the

wave function, and the initial translational energy range is determined via the

uncertainty principle from the spatial localization of the wave function. The solu-
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tion is propagated forward in time until after the collision is over and the results

are analyzedto determine the probabilities for the various final states. Thesecal-

culations are both computationally intensive and consumeconsiderablestorage

resources,so most large-scalecalculations havebeencarried out on the CRAY-2.

There are three main advantagesof the method. First, asmentioned above,the
method only considersa single initial state. Thus the scalingof the operations
of the method will be lessthan the third power, unlike the previous methods dis-

cussed,and sofor large enough calculations this method will be more efficient.

Second,sincethe initial conditions consist of a spreadof initial energies,it is pos-
sible to obtain results for many different energiesfrom a single time propagation

run. Finally, sincethe time-dependentequation is solvedand one is explicitly

dealing with wavepackets, the physical interpretation of the results can bring

more insight than for the time-independent methods.

C. The influence of supercomputerson dynamics calculations.

Relatively few classicaldynamics studies utilizing vectorized codesrun-

ning on Cray computers have beenreported in the literature, mainly becausethe
calculations can be carried out on slowermachines. Indeed, the time per trajec-

tory is small enough that evenpersonal computershave beenused. What con-
tributes to the overall time is the number of trajectories required, and the advan-

tage of a vectorized codeis that results can be obtained in much lessreal time

(perhapsdays rather than months). This offersthe opportunity for much better
feedbackto others whosework dependson the outcomeof the dynamics,just as
discussedin section IV for the electronic structure case.

In the area of quantum dynamics, the advent of supercomputershas

openedentire new horizons. The availableprocessingpower is beginning to make

the study of non-reactive collisions in systemsof more than three atoms feasible;

this will allow the investigation of phenomenalike vibrational-to-vibrational en-

ergy transfer, a processwhich cannot occur for lessthan four atoms. The large

memory of the CRAY-2 hasbeenthe main impetus behind a renaissancein quan-

tum reactive scattering, for the application of the basisfunction methods that

have proved sofruitful would not be practical on smaller machines.
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VI. Conclusionsand future directions

We have reviewed the performanceof essentially all the currently avail-

able Cray computers on typical tasks in quantum chemistry and dynamics. Our

discussionsshowthat it is possibleto achievea large fraction of the possible ma-
chine performance in all phasesof thesecalculations, and wehave also consid-

ered the impact thesedevelopmentshave had on researchin quantum chemistry

and dynamics. In view of the fact that one consequenceof an increasein avail-

able computing power is to whet researchers'appetitesfor evenmore computing

power, we shall discussbriefly here somefuture directions.

The most important developmentin the next few yearsis likely to be a

much greater useof multitasking on Cray computers. As we havediscussedhere

and elsewhere[28], multitasking will probably be a necessityto ensurethat all
CPUs arekept busy in multiple CPU systems,and it should alsobe used when

a singlejob needsaccessto a large fraction of systemresources.The arrival of
mierotasked library subroutines should encouragemore multitasking, aswill the

incorporation of automatic multitasked codegeneration into the CFT77 compiler,

but someburden will fall on the programmer if coarse-grainedparallelism is to be

exploited. There has beenlittle work reported investigating the useof multitask-

ing on normal production machines: our own experiencessuggestthat somework
remains to be done at the operating systemlevel in implementing multitasking.

Given that there is the potential on the Y-MP to achievecloseto 2.5 GFLOPS

using all eight CPUs, as discussedin section IIID, the rewardsfrom multitasking

can be considerable,and we can expect to seemuchwork in this area in the near
future.

Another important developmentwill be the arrival of new supercomputer

models. The CRAY-3, featuring 16CPUs and a clockperiod of 2 ns and using

gallium arsenidetechnology,has beendescribedin somedetail [158]. The theoret-

ical maximum performance would be 1 GFLOPS per CPU, or 16 GFLOPS using

all CPUs together. This machine is an obviousdevelopmentfrom the CRAY-2,

and much of the experiencewith the latter should carry over to the CRAY-3.

There is already discussionof the CRAY-4 [158],which is planned to out-perform

the original CRAY-1 by a factor of 1 000-- three orders of magnitude in some

twenty years. Thesenew machineswill have memoriesof 1 GW and larger, which
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will stimulate not only the wider use of some of the large-memory-based algo-

rithms we have described in sections IV and V, but also the development of new

schemes that can exploit even larger memories. This will undoubtedly lead to

novel and exotic approaches to many problems, but the more commonplace meth-

ods described earlier will also see substantial performance benefits from the newer

machines. It should be noted, however, that the size of electronic structure prob-

lems that can be tackled using conventional methods is commonly limited by ex-

ternal storage capacity even on the current range of Cray computers, and this

limitation will only become more acute as faster machines appear. While meth-

ods designed to circumvent this limitation will undoubtedly be developed, it is

very likely that providing adequate external storage will be a major problem for

supercomputer vendors in the next decade.

Having reviewed developments in hardware and software for computa-

tional chemistry on Cray computers, a final conclusion can be drawn. The power

of Cray supercomputers, with their particular suitability for computational chem-

istry, has stimulated many important and fundamental developments in the field,

and as the next generations of Cray computers appear we can be confident that

this trend will continue. There is therefore every reason for optimism about what

the rather natural pairing of computational chemistry and Cray supercomputers

will bring forth.
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Table 2. SAXPY performance (in MFLOPS) on Cray computers .

N a X-MP/14se b X-MP/48 b Y-MP/832 b CRAY-2 *c CRAY-2 c

4 11.1 11.4 15.2 3.7 3.3

8 22.1 22.7 30.3 7.0 6.5

12 33.2 34.1 45.5 10.1 9.5

16 44.2 44.7 60.6 13.0 12.1

25 69.0 68.0 94.5 19.1 18.8

32 84.8 86.3 120.9 23.2 22.7

63 112.9 132.8 211.5 40.3 38.1

64 103.3 128.6 213.5 42.6 37.6

127 104.4 119.3 213.1 41.1 53.4

128 103.9 135.5 214.1 52.2 50.8

255 119.6 131.0 242.1 58.0 67.8

256 104.0 121.2 242.5 80.5 62.2

300 120.5 158.6 178.7 70.8 66.2

511 121.7 143.3 206.8 63.0 45.1

512 120.3 140.6 206.5 67.2 63.1

too (nl/2) 122 (22) 159 (30) 243 (32) 81 (63) 68 (55)

" Vector length.

b CFT77 gives best performance.

c SCILIB routine gives best performance.



Table 3. Matrix multiplication performance (in MFLOPS) on CRAY X-MP/48.

N_ DOT b SAXPY _ 4*unrolledd MXM _

4 2.2 12.1 9.6 22.8

8 4.6 24.3 22.2 72.4

10 5.7 29.4 27.0 92.8

12 6.8 34.1 33.6 111.4

16 9.0 40.5 42.9 134.5

25 14.3 56.8 63.1 159.9

32 17.2 67.0 75.0 172.3

50 25.8 80.4 98.0 186.2

63 33.3 91.5 103.8 190.8

64 22.5 91.7 107.0 191.3

75 31.7 87.1 96.5 180.1

100 38.6 98.5 118.2 189.9

127 53.9 113.3 127.5 194.2

128 30.2 110.8 125.0 194.3

175 70.5 120.1 131.0 194.0

255 82.5 116.2 131.9 195.8

256 39.8 117.9 135.3 195.8

400 83.0 122.2 137.8 194.8

511 103.5 124.3 139.5 196.5

512 40.8 126.3 143.7 196.6

r_ (n,/2) 104 (127) 126 (127) 144 (31) 197 (11)

a Vector length.

b Dot product inner loop; CFT77.

c SAXPY inner loop; CFT77.

d Unrolled to a depth of four (see text); CFT77.

SCILIB routine.



Table 4. Matrix multiplication peI_formance(in MFLOPS) on Cray computers.

Na X-MP/14se X-MP/48 Y-MP/832 CRAY-2* CRAY-2

4 21.8 22.8 32.1 19.7 18.5

8 68.0 72.4 101.8 63.1 58.5

10 88.1 92.8 133.2 86.4 82.2

12 105.0 111.4 159.7 104.8 98.2

16 130.8 134.5 201.7 146.5 132.1

25 153.9 159.9 239.3 203.6 178.1

32 164.3 172.3 256.8 249.4 223.4

50 177.1 186.2 277.6 312.8 301.3

63 181.8 190.8 285.3 339.6 330.6

64 181.7 191.3 285.8 361.7 329.6

75 171.9 180.1 268.4 288.2 255.5

100 180.6 189.9 283.1 334.6 295.5

127 184.6 194.2 289.8 380.3 337.9

128 184.7 194.3 290.0 361.8 330.9

175 184.3 194.0 289.1 337.6 321.5

255 186.1 195.8 292.0 382.9 235.3

256 186.1 195.8 292.1 337.9 256.7

400 185.1 194.8 290.4 340.3 264.5

511 186.8 196.5 293.1 379.0 238.6

512 186.1 196.6 293.1 342.9 241.2

(nl/2) 187 (10) 197 (11) 293 (11) 383 (33) 338 (22)

a Vector length.



Table 5. Performanceof specializedmatrix multiplication techniques (in
MFLOPS).

CRAY X-MP/48 CRAY-2*

Na MXM b 8*unrolled c MXM b 8*unrolled c Strassen d MXMPMA *

16 136 52 111 56 93 110

63 191 95 319 110 364 370

64 191 103 285 168 367 373

127 194 111 289 187 385 386

128 194 112 381 225 383 378

255 196 112 259 188 386 387

256 196 113 304 233 385 383

511 197 117 387 242 407 387

512 197 117 328 259 423 387

a Vector length.

b SCILIB routine.

c Unrolled to a depth of eight (see text); CFT2.

d Strassen algorithm, (Bailey, Ref. [27]).

Calahan et al., Ref. [23].



Table 6. Performance(in MFLOPs) for different operationsa.

Operation X-MP/14se X-MP/48 Y-MP/832 CRAY-2 CRAY-2*

Vector add 60 (24) 70 (24) 119 (28) 39 (63) L 48 (72) L

Dot product 90 (96) 95 (91) 148 (102) 80 (132) L 103 (96) L

SAXPY 122 (22) 159 (30) 254 (31) 68 (55) L I01 (128) L

Vector divide' 25 (16) 26 (15) 41 (16) 24 (23) 26 (26)

MXV c 187 (17) L 195 (18) L 312 (19) L 242 (27) L 294 (27) L

MXM d 187 (10) L 197 (11) L 308 (12) L 338 (22) L 383 (33) L

Cubic ¢ 168 (17) 174 (15) 288 (19) 113 (15) 121 (17)

Sextic e 178 (14) 187 (13) 297 (16) 142 (17) 148 (17)

[2/1] / 104 (13) 109 (12) 170 (13) 116 (16) 118 (17)

[3/2] I 125 (11) 132 (11) 207 (12) 154 (16) 158 (17)

square root b 11 (15) 12 (16) 14 (15) 23 (21) 24 (19)

sine' 3 (9) 4 (10) 5 (11) 6 (13) 6 (16)

arctangent b 5 (11) 5 (11) 8 (13) 6 (16) 6 (15)

exponential' 6 (12) 6 (12) 9 (13) 9 (25) 9 (25)

log¢ b 4 (11) 4 (11) 6 (11) 6 (16) 6 (15)

MOVE 9 76 (23) 83 (25) 143 (30) 51 (37) 72 (47)

GATHER h 26 (10) 46 (14) 80 (19) 17 (22) 20 (25)

SCATTER h 32 (11) 45 (13) 88 (20) 20 (16) 24 (16)

SPDOT i 32 (67) L 34 (64) L 52 (92) L 40 (230) L 48 (192) L

SPAXPY i 44 (58) L 47 (55) L 77 (66) L 31 (63) L 42 (96) L

a L denotes SCILIB routine, otherwise CFT77. r_l/2 values in parentheses.

b Performance in megaresults per second.

c Matrix-vector product.

d Matrix multiplication.

Polynomial of given order with vector of arguments.

I Rational fraction of given order with vector of arguments.

g Vector move, performance in MW/s.

h Performance in MW/s.

i Sparse vector operations (see text).



Table 7. Macrotasked matrix multiplication performance(in MFLOPS)a.

1 CPU 2 CPUs 4 CPUs 8 CPUs

X-MP/48 200 399 796
CRAY-2 420 756 1216
Y-MP/832 293 585 1166 2320

a Obtained in stand-alone mode on X-MP/48 and CRAY-2. In stand-alone mode

the Y-MP rates would be some 3-4% higher.



Table 8. Gaussianintegrals and SCF timings for N2 on CRAY X-MP/48 _ (in seconds).

Dbeh D2h C2v C8 C1

NfN T Time NINT Time NINT Time NINT

Integrals 6230657 407.8 1837575 472.4 3426083 477.3 8416943

Ordering of symmetry integrals d

Symmetry N_R D Time NORD Time .[VOR D Time NORD

_ 509026 0.5 162710 0.2 1237527 0.6 6847625

_ 3411984 7.91 1223503 1.2 3718896 6.11 7840000

_fl_ 940545 1.7 347383 0.7 995841 1.2 2037700

_ 3324672 10.21 1321917 2.1 1249248 1.3

Torn 8186227 20.4 3055513 4.3 7201512 9.3 16725325

Time

955.6

Time

12.6 I

14.9 f

5.0 I

32.5

_NT

15741082

N'O RD

37271025

37271025

Time

1676.3

Time

62.9 I

62.9

SCF calculation

F g Iter h F Iter F Iter F

0.4 0.6 0.2 0.4 0.4 0.7 0.6

Iter

1.2

F

1.0

Iter

2.2

a [5s 4p 3d 2f lg] basis; spherical harmonic functions used except where indicated.

b Cartesian basis functions.

c Number of non-zero integrals computed.

d Ordering performed in memory unless otherwise specified.

Number of ordered integrals generated.

I Ordering uses direct access storage (SSD).

g Closed-shell Fock matrix construction.

h Closed-shell SCF iteration time.



Table 9. Integral, SCF and transformation timings for N2 (in seconds)_.

X-MP/48 CRAY-2* Y-MP/832

Integral calculation

d_NT

Integrals 1837575 472.4 435.8 210.8

Integral ordering

Symmetry JV_) RD

ozo_o_ 162710 0.2 0.4 0.1

c_c_fl 1223503 1.2 2.7 0.6

ow_flfl 347383 0.7 1.5 0.4

oLf175 1321917 2.1 5.2 1.2

Total 3055513 4.3 9.9 2.3

SCF calculation

Fock matrix d 0.2 1.3 0.2

SCF iter e 0.4 1.4 0.3

Integral transformation f

Transformation 8.6 8.3 6.6

a [5s 4p 3d 2f lg] spherical harmonic basis.

b Number of non-zero integrals computed in D2h symmetry.

c Number of ordered integrals of each symmetry type. All ordering is done in

memory.
d Closed-shell Fock matrix construction.

Closed-shell SCF iteration.

f lo'g and lau MOs frozen in transformation.



Table 10. CI timings for N2 on CRAY X-MP/48(in seconds)a.

Calculation Time

Formula tape for 16 internals b

Direct CI iteration (17 626 CSFs)

<0.1

0.9

Formula tape for 2804 internals c

Direct CI iteration (729 950 CSFs)

Processing (ailb j) integrals

Processing (ailj k) integrals

Processing (ablcd) integrals

12.5

79.7

38.3

18.1

10.2

a [5s 4p 3d 2f lg] basis: leg and lau MOs frozen.

b Single reference CSF, 10 electrons correlated.

c CAS reference space (6 active electrons in 6 orbitals -- 32 CSFs), 10 electrons

correlated.



Table 11. Execution times and rates for classicaltrajectories.

Fraction of total time MFLOPS

X-MP/48 a y-MP/832 b CRAY-2 c CRAY-2 *c X-MP/48 Y-MP/832 CRAY-2 CRAY-2*

F+H2
Gradients of Potential 0.36 0.39 0.29 0.31 130 190 160 180
Build Qn and Chain rule 0.27 0.24 0.20 0.20 120 210 160 190

sub total 0.63 0.64 0.49 0.51 126 200 160 184

Integrator 0.37 0.36 0.51 0.49 55 93 40 50

overall 100 160 99 118

H2+H2

Gradients of Potential 0.94 0.94 0.94 0.94 110 190 100 120

Build Qn and Chain rule 0.03 0.03 0.02 0.03 140 210 140 160

sub total 0.97 0.97 0.96 0.97 111 190 101 121

Integrator 0.03 0.03 0.04 0.03 60 110 50 50

overall 110 190 98 119

a Using CFT compiler. The CFT77 compiler produces bad code for this problem.

b Using CFT77 compiler.

Using CFT77 compiler. Due to the presence of some features of FORTRAN 77 which are only available under CFT77,

we do not use CFT2.



Table 12. Characterization of the execution rates for matrix operations.

Routine

Machine MXM a RSb LUSOLV c LUSOLV d MINV SGEF A/SL _ SSPFA/SL /

X-MP/48 200 g 170 190 210 73 130 73

2 150 110 120 0 200 470

Y-MP/832 290 240 ... 300 120 250 120

1 100 ... 110 7 150 470

CRAY-2 310 120 170 240 340 120 43

4 25 160 290 80 140 330

CRAY-2* 370 140 210 200 360 140 50

1 30 160 150 60 140 280

a matrix multiply routine from SCILIB.

b EISPACK [57] routine for real symmetric eigenvalues and eigenvectors from

SCILIB.

FORTRAN program for general linear equation solution [129,130] compiled us-

ing CFT2.

d FORTRAN program for general linear equation solution compiled using CFT77.

LINPACK [131] program for general linear equation solution from SCILIB.

Y LINPACK program for symmetric linear equation solution from SCILIB.

g Upper entry: estimate of asymptotic execution rate in MFLOPS, lower entry:

fitted estimate (see text) of matrix order required to achieve half of the asymp-

totic rate.



Abstract

The influence of recent developments in supercomputing on computa-

tional chemistry is discussed with particular reference to Cray computers and

their pipelined vector/limited parallel architectures. After reviewing Cray hard-

ware and software w.e_e.x_.e the pei{ormance of different elementary program._o_+L,.,_e__. -_ •

structures _ _ ermc_i methods for improving program performance_[_-

tt_.z_.rl4seu'_-the computationM strategies appropriate for obtaining optimum per-

formance in applications to quantum chemistry and dynamics_Finally, some dis-

cussion is given of new developments and future hardware and software improve-

ments.


